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ARTICLES 

Matrices a n d  Ti l ings with Right Tromin oes 

C A R L O S  U E N O  
I E S  Cruz de Piedra 

3 5 0 1 4 Las Pal mas de Gran Canaria, SPA I N  
car los .ueno@terra.es 

In his book [1], Solomon W. Golomb states that the problem of determining how many 
ways a 4 x n rectangle can be tiled by right trominoes "appears to be a challenging 
problem with reasonable hope of an attainable solution." This problem was solved 
in [ 5] by using generating functions, and similar results have been obtained in [ 6] by 
S. Heubach, P. Chinn, and P. Callahan, who considered the problem of tiling rectangles 
with right and straight trominoes. Other beautiful results on right trominoes can be 
found in [2], [3], or [4]. In this article we present a matrix approach to the suggestion 
made by Golomb, which has the advantage of being applicable to arbitrary m x n 
rectangles-although it also has the drawback of using rather large matrices. The main 
result (see Theorem 1 ) , though not especially difficult, seems to have passed unnoticed 
so far. With the help of mathematical software packages such as Mathematica we are 
able to find, for example, the number of different tilings for squares of side a multiple 
of 3 up to the 1 2  x 1 2  case, as well as generating functions for the number of tilings 
of rectangles with right trominoes. We also state some results about the tilability of a 
family of regions called strips, which include rectangles as a particular case. 

Basic notation and definitions 

A right tromino is a shape made up of three 1 x 1 squares as shown in FIGURE 1 a. A 
tiling of an m x n rectangle by right trominoes consists of a complete covering of the 
rectangle with these trominoes so that there are no overlappings among them and each 
tromino is placed "nicely" on it-if we consider the rectangle as formed by mn squares 
of unit side, each tromino is placed covering perfectly three of these squares.  From now 
on, whenever we use the word tiling we will mean a tiling with right trominoes.  Our 
objective in this article is to compute the number of different tilings that rectangles and 
related regions, which we call strips, can have. 

(a) Right tromino (b) Tiling (c) 5-binary path 

Figure 1 Bas ic  concepts . 

319 
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Let us start by defining an m-binary path as a descending path from a top corner 
to a bottom corner of an m x 1 rectangle, in such a way that it goes along the sides 
of the unit squares forming such a rectangle. We always assume that the first and last 
segments are vertical (see FIGURE 1c). We can see that the vertical edges of these 
paths can be on the left side or the right side of the hosting rectangle. If we assign 
the value 0 to its left side and the value 1 to its right side, each m-binary path can be 
associated to an m-bit string, as shown in FIGURE 2. 

0 1 0 1 

� 00101 = 5 � 10001 = 17 

Figure 2 Turning m-binary paths into m-bit strings. 

Conversely, each m-bit string corresponds to a unique m-binary path. Therefore, 
there are 2m different m-binary paths, and each one can be identified with a number 
between 0 and 2m- 1, written in its binary form. In the rest of this article, we identify 
an m-binary path and its associated m-bit string with the symbol j, 0 ::;: j ::;: 2m - 1, 
where the binary representation of j gives the corresponding path-whenever we drop 
the bar in j we will be referring to the number instead of the path it represents. 

Now, let us consider two consecutive m-binary paths "i and j in an m x 2 rect
angle, which can be considered as formed by two m x 1 consecutive rectangles (see 
FIGURE 3). 

Figure 3 Two consecutive 5 -binary paths. 

These paths bound a region inside the rectangle, which can be covered or not with 
right trominoes. We write ("i, J)m to denote the number of different tilings by right 
trominoes of the region bounded by "i and j. As an example, FIGURE 3 illustrates the 
fact that (5, 19)5 = 1, since there is exactly one way to tile the region consisting of the 
6 grey cells. 

Given a nonnegative integer m, we define the transfer matrix Gm as the matrix 
whose coefficients are Gm[i, j] = ("i, J)m-we refer to the coefficient at position [i, D 
of any matrix A as A[i, j]. A special case arises whenever "i =2m- 1 and j = 0, 
because these consecutive m-binary paths do coincide, and the region bounded by 
them does not contain any cell. In this situation we set (2m - 1, O)m = 1, meaning by 
this that there is just one way to tile this null-area region, which consists in not placing 
any right tromino on it. Also, for the degenerate case m = 0 a similar argument leads 
us to set Go = [1] as most convenient. The three next matrices in this sequence are 
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0 0 0 0 0 0 0 2 

0 0 I 0 I 0 0 0 

[l 
I 

Il 
0 0 0 0 0 0 0 0 

G 1 = [� �l Gz = 0 0 G3 = 0 0 0 0 0 0 I 0 

0 0 0 I I 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

We invite the reader to check the validity of some coefficients in these matrices, in 
order to get more familiar with their meaning. The matrices { G m} are our object of 
study in the next section, for they constitute our main tool to compute the number of 
different tilings for rectangles and other related regions. 

Transfer matrices 

We now consider m-binary paths in an m x n rectangle R. If we consider such a rect
angle as the union of n consecutive m x 1 rectangles (see FIGURE 4), then wk repre
sents an m-binary path in the kth unit-width rectangle. 

Figure 4 m x 1 rectangl es form i ng an m x n rectangl e. 

Given an m-binary path wk and a tiling T in R, we say that wk and T are compatible 
if the path goes along the edges of the trominoes forming the tiling T. For example, 
the tiling shown in FIGURE 1b is compatible with the path 0 in the first column, with 
the path 37 in the second column, with the path 22 in the third column and with the 
path 63 in the fourth column. It is not hard to observe the following fact. 

LEMMA 1 .  Let R be an m x n rectangle. Then, each tiling with right trominoes 
determines a unique set of n consecutive m-binary paths w1, • • •  , Wn, all of them 
compatible with the tiling. 

Proof. Let us consider the vertical sides 10 , 11, • • •  , ln of the n consecutive m x 1 
rectangles that R has . We can partition this rectangle in regions Rb 1 ::::; k ::::; n - 1 ,  
each one formed by the union of the trominoes with interiors intersecting h (see FIG
URE 5) .  

The interior of Rk coincides with the interior of the region bounded by two compati
ble and consecutive m-binary paths wk and wk+i· Moreover, when considering the next 
region Rk+l and its bounding paths w�+i and w�+Z we must have wk+1 = w�+i, for 
obvious reasons. Therefore, we can associate to the tiling T an ordered set of compat
ible and consecutive m-binary paths {w1, w2, • • •  , wn}, where we have w1 = 0, Wn = 
2m 

- 1 .  To see uniqueness, let us suppose there are different sets { w 1, w2, • • •  , Wn} 
and { w;, w;, . . . , w�} of consecutive m-binary paths for the same tiling T .  Then we 
would have for some k that wk =/= w�, but this is impossible for that would imply that 
there is at least one complete tromino in the region bounded by these different paths, 
both included in the same m x 1 rectangle, and this cannot happen. • 
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1----l-····""""11---1·-----·· -............. . i 

Figure 5 The region R3 is bounded by two m-binary paths compatible with the tiling. 

In order to take full advantage of the sequence of matrices { G m}, we need now to 
generalize our study to a wider family of regions, which include rectangles as a special 
case. 

DEFINITION 1. An m-strip of order n 2: 2 bounded by m-binary paths w 1 and Wn 
is the region in an m x n rectangle bounded on the left by w1 and on the right by Wn· 
We refer to it as Sm(WJ, Wn, n), and we write N(Sm(w1, Wn, n)) to denote its number 
of different tilings. 

Figure 6 The strip Ss(26, 3, 9). 

I!! particular, an m x n rectan_gl� can be considered either as the strip 
Sm(O, 2m - 1, n), or as the strip Sm(O, 0, n + 1). Clearly Lemma 1 can be general
ized to tilings of m-strips. 

The next result is straightforward. 

LEMMA 2. Given any m-binary path Wn-l in the ( n  - l)th column of an m x n 
rectangle R, with n 2: 3, the number of tilings of the strip Sm(W�o Wn, n) that are 
compatible with Wn-l is given by the product 

N(Sm(WJ, Wn-l• n- 1)) . (Wn-h Wn)m. 

Notice that when Wn-l runs through all the possible m-binary paths, the sum of 
these products is precisely N(Sm(w1, Wn, n)) .  Now we are ready to give a full meaning 
to our family { G m} of transfer matrices. 

PROPOSITION 1. The number of different tilings of the strip Sm(w1, Wn, n), n 2: 2, 
is given by the coefficient G;:,-I[WJ, Wn]. 

Proof We use induction on the order n of the strip. For n = 2, let us consider two 
consecutive m-binary paths w1 and w2 in am x 2 rectangle. Then, from the definition 
of the matrix G m we have 
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Now let us assume that the result is valid for a natural number n - 2 ::: 2. Then 

and therefore the statement is also true for n. • 

With respect to rectangles, the number of different tilings in an m x n rectangle can 
be expressed either as G::,-1[0, 2m 

- 1 ]  or as G::,[O, 0]. We will use both possibilities 
indiscriminately. 

Main result 

In this section our goal is to give an explicit expression for the sequence of matrices 
{Gm}. In order to achieve this, we need some auxiliary matrices. We define GLm as 
the matrix with GLm[i, j] = (i', j){;,, where (i', ]} {;, = (Oi', Oj} can be viewed as the 
number of tilings of the region bounded by consecutive paths i' and j, which has been 
modified by adding an extra unit square on the upper left corner of the m x 2 rectangle. 
Similarly, let GRm be the matrix with GRm[i, j] = (i', ]} �.where (i', j } � = (li', 1]} 
represents the number of possible tilings of the region bounded by i' and j, which has 
been modified by adding an extra unit square on the upper right corner. Finally, let 
GTm be the matrix with coefficients GTm[i, j] = (i', ]} � . where (i', j } � = (Oi', 1]} is 
the number of possible tilings of the region bounded by paths i' and j, which includes 
two extra unit squares on the top of the rectangle. To understand better the meaning 
of these new matrices, the reader can observe FIGURE 7 and realize that (5, 31}; = 1 ,  

--R - -T (5, 3 1 }5 = 1 and (5, 3 1 }5 = 0. 

Figure 7 One extra unit square on the left, on the right, and two extra unit squares on 
the top. 

It is not a hard task to verify that the relations listed in TABLE 1 hold; most of them 
are trivial. As an example, in FIGURE 8 we have i' = 1 6, j = 63, and the relation 

(0- 1-}T (- -}L (- -}R l, 1 m+l = l, 1 m + l, 1 m 

reduces to the equality 4 = 2 + 2. 
From these relations we get the following result. 

THEOREM 1 .  The matrices Gm, G Lm, G R"' and GTm satisfy the following proper
ties: 
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TABLE 1: Relations among the coefficients of Gm, 
GLm, GRm, and GTm 

(Oi, O])m+I = (i, j)� 
(Oi, 1J)m+l = (i, j)� 
(li, OJ)m+l = (i, J)m 
(li, 1J)m+l = (i, j)� 

(Oi, Oj)�+t = (i, J)m 
(Oi, 1j)�+t = (i, j)� + (i, j)� 
(li, Oj)�+t = 0 
(1i, 1j)�+l = (i, J)m 

(Oi, Oj)�+t = (Oi, Oj)�+t = 0 
(Oi, 1j)�+t = (Oi, 1j)�+t = (i, J)m 
(1i, Oj)�+t = (li, Oj)�+t = 0 
(1i, 1])�+1 = (li, lj)�+l = 0 

lj 
J 

or 

= (- -}L l,] m + (- -}R l,} m 

Figure 8 Illustrating one relation of TABLE 1. 

(a) For m = 0 we have 

Go= [1], GLo = GRo = GTo = [0]. 

(b) For m > 0 the following recursive relations hold: 

G 
[GLm m+l = Gm 

Here, Zm represents the 2m x 2m zero matrix. 

Proof The first part follows from the fact that Go relates to the number of tilings 
of a null-area region, while G L0, G R0, and G T0 relate to nontilable regions that have 
respective areas of 1, 1, and 2 unit squares. 

For the second part of the theorem, let us suppose that we already know the matrices 
Gm, GLm, GRm and GTm. Let us start with Gm+l· 

We can classify all pairs of consec
utive (m + I)-binary paths in four groups: {Oi, Oj}, {Oi, lj}, {li, Oj} and {li, 1j} (see 
FIGURE 9). But the submatrix of Gm+t which corresponds to the first of these groups 
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{01, OJ) {01, lj} {II, OJ) {II, lj} 
Figure 9 Different pairs of (m + 1 )-binary paths in terms of their initial behaviour. 

is precisely the upper left 2m 
x 2m block, and by TABLE 1 this block must coincide 

with GLm. In a similar way, the second group is related to the upper right 2m 
x 2m 

block, and it has to coincide with GTm. For the third and fourth groups we obtain re
spectively the lower left block, which must be Gm, and the lower right block, equal to 
G Rm. Therefore, 

G [GLm 
m+l = Gm 

This reasoning can be performed in a similar way, by using the relations in TABLE 1 ,  
with the matrices G Lm+l> G Rm+l and GTm+l> obtaining respectively 

GLm+l = [�: �:], 
GTm+l = [�: 

GRm+l = [�: 
GLm + GRm] 

Gm . 

From the equality G Lm = G Rm we finally obtain the stated result. 

<< LinearAlgebra'MatrixManipulation' 
Array[GL, 12] 
Array [G, 12] 
Array [GT, 12] 
Array [Z, 12] 
GL[O] = {{O}} 
G[O] = {{1}} 
GT [0] = {{O}} 

Z[O] = {{O}} 
Do[ 

GL[i + 1] = BlockMatrix[{{Z[i], G[i]}, {Z[i], Z[i]}}]; 

G[i + 1] = BlockMatrix[{{GL[i], GT[i]}, {G[i], GL[i]}}]; 
GT[i + 1] = BlockMatrix[{{G[i], 2GL[i]}, {Z[i], G[i]}}]; 

Z[i + 1] = BlockMatrix[{{Z[i), Z[i]}, {Z[i], Z[i]}}], 

{i, 0, 11}] 

Figure 10 Mathematica instructions to compute Gm up tom= 12. 

Applications 

• 

Enumeration and existence of tHings With a simple set of instructions in Mathe
matica (see FIGURE 10) or similar math packages we can compute the matrix Gm for 
the first values of m -we were able to compute Gm comfortably up tom = 12. By 
means of these calculations it is easy now to find the number of different tilings with 
right trominoes for some special cases : 
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C OROLLARY 1 .  For 3k x 3k squares we have: 

(a) The number of different tilings of a 3 x 3 square is 0. 

(b) The number of different tilings of a 6 x 6 square is 162. 

(c) The number of different tilings of a 9 x 9 square is 1193600. 

(d) The number of different tilings of a 12 x 12 square is 2033502499954. 

Proof Just check out the values of the coefficients G�[O, 7], GUO, 63], G�[O, 511], 
and Gg[O, 4095]. • 

As an extension to this corollary; TABLE 2 shows the number of different tilings for 
rectangles whose sides are up to 9 units long. 

TABLE 2: Number of tilings for small m x n rectangles 

2 
...-. 3 e .._, 4 � 5 ::c 

6 
7 
8 
9 

II Widm (n) II 213141sl 6 1 1 1 8 9 

0 2 0 0 4 0 0 8 
0 4 0 8 0 16 0 

0 0 18 0 0 88 
0 72 0 0 384 

162 520 1514 4312 
0 0 22656 

0 204184 
1193600 

Now we take a closer look at the existence of tilings in m-strips. We say that a strip 
is size appropriate if it contains a number of unit squares that is a multiple of 3--only 
in this case a strip can possibly be tiled with trominoes. The reader should notice that 
given m-binary paths 'i and j, whenever m ¢= 0 (mod 3) exactly one of the m-strips 
Sm('i, j, n), Sm('i, j, n + 1) and Sm('i, j, n + 2) is size appropriate. On the other hand, 
when m = 0 (mod 3) the size appropriateness of an m-strip does not depend on n. As 
we said before, the coefficient o::,-t [i , j] counts the number of different tilings that 
Sm('i, j, n) has. In case this number is zero, we can say that the strip Sm('i, j, n) is not 
tilable. Computations of the powers of Gm show us nontrivial examples of strips that 
cannot be tiled with right trominoes (see FIGURE 11). 

Wg=S 

Figure 11 An example of a size appropriate strip that cannot be tiled with right tromi
noes. 
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Our strategy to obtain results on the tilability of m-strips for arbitrarily large m is 
based on calculations performed for m-strips with small values of m. These calcula
tions can be managed by our mathematical software, and the results obtained from 
them help us confront the general case with success. 

THE OREM 2. The following statements hold: 

1. Any siz e  appropriate strip S2('i, j, n) can be tiled with right trominoes. 

2. Any siz e  appropriate strip S4(i, j, n) with n 2:: 6 can be tiled with right trominoes. 

3. Form ev en, m 2:: 6, any siz e  appropriate strip Sm(i, j, n) with n 2:: 11 can be tiled 
with right trominoes. 

P roof To prove I, let us consider the sequence of matrices M2,k = G�+3k + 
G�+3k + G�+3k, k 2:: 0, which satisfies the recursion formula M2.k+l = M2,k · G�. 
Note that all the involved matrices have nonnegative coefficients. In fact, the matrix 
M2,0 has all its entries strictly positive, and this is also true for each M2,k. k > 0-
otherwise, G2 and hence M2,0 would have a row of zeroes, which is not the case. Now, 
let us take a size appropriate 2-strip of order n .  Then n must be greater than I and there 
is some k such that n - 1 E {I + 3k, 2 + 3k, 3 + 3k}. If the strip is bounded by paths 
w1 and Wn, the coefficient [w1, Wn] in M2,k is nonzero, and therefore, that of G�-l has 
to be also nonzero, for the corresponding coefficient in each of the other two matrix 
terms of M2,k must be zero, being related to strips which are not size appropriate. This 
implies statement 1. A similar argument can be used to prove the second assertion, 
starting with the sequence of matrices M = G5+3k + G6+3k + G7+3k k > 0 and 4.k 4 4 4 ' - ' 

checking that the first of these matrices (and, consequently, the rest of them) has all its 
entries greater than zero. 

To prove the last part of the theorem, let us consider a size appropriate m-strip 
of order n 2:: II, with m even and greater than 4. To show that it can be tiled, let 
us divide the strip into left and right regions of lengths n 1 2:: 6 and n2 2:: 6, so that 
n 1 + n2 = n + I and both regions overlap in a central m x 1 rectangle. Introduce now 
some auxiliary segments L,, L2, • • •  and R 1, R2, • • •  respectively in these left and right 
regions of the strip, as shown in FIGURE 12. 

Figure 12 Tiling a size appropriate m-strip with m even. 

The left segments divide the left part of the strip in substrips of heights 2, 4, 4, ... , 
4/2 and the right ones in substrips of heights 4, 4, 4, ... , 2/4-the last height depend
ing on whether m = 0 (mod 4) or m = 2 (mod 4). These substrips have an "open" 
border along the middle (overlapping) strip; the good thing about this configuration is 
that it allows us to construct an intermediate m-binary path Wn1 which splits the initial 
strip into smaller substrips, all of them being size appropriate. For, starting with the 
upper left substrip, we can close it so that it becomes a size appropriate 2-strip (the 
height of 2 units gives us freedom to achieve this by adding 0, 1, or 2 unit squares); 
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after closing it ,  we move into the upper right substrip, and close it creating a size ap
propriate 4-strip ; then we move to the second left substrip and close it in a similar way, 
alway s producing size appropriate smaller substrips in our process. Since our initial 
m-strip was size appropriate, the last substrip which becomes closed without freedom 
to choose its open border is bound to be size appropriate as well , and therefore, by 
previous parts 1 and 2, all these substrips can be tiled and we obtain a complete tiling 
of the m-strip. • 

Form-strips with m odd, things become a little bit trickier. Given m odd, let us give 
special names to the paths Im = 0 1 0 1 0 1  . . .  1 0  and rm = 1 0 10 1 0  . . .  0 1  (m bits) ;  we 
refer to them as left exceptional and right exceptional m-binary paths respectively (see 
FIGURE 1 3) .  

0 1 0 1 

� � 
Figure 1 3  Left a n d  r i ght except ional  paths. 

It is easy to realize that whenever a strip is bounded on its left by Im or on its right 
by r m , then it cannot be tiled. In the corresponding matrix G m this translates into the 
fact that the row lm and the column r m only contain zeroes. Now we have: 

THEOREM 3 .  The following statements hold: 

l .  Any size appropriate strip S5(1, j, n) with n :::: 1 0, z f= Z5 and j f= r5 can be tiled 
with right trominoes. 

2. Any size appropriate strip S7(l , j, n) with n :::: 8, 1 f= Z7 and j f= r7 can be tiled 
with right trominoes. 

3 .  For m  odd, m:::: 9, any size appropriate strip Sm("i , j, n) with n:::: 2 1 ,  z f= Zm and 
j t= r m can be tiled with right trominoes. 

Proof. We follow a parallel argument to the one used in Theorem 2, introducing 
the necessary variations. For part 1 let us consider the sequence of matrices Ms,k = 
c�+3k + G�0+3k + G�1 +3\ k:::: 0. This sequence is formed by nonnegative matrices 
and satisfies Ms,k+ l = Ms,k · G�. Actually, its first term has all its entries strictly pos
itive, except those which correspond to the row l5 or the column r5• This property 
is also shared by each matrix Ms,h because G5 is a matrix with nonnegative coeffi
cients that only has one row of zeroes (!5) and one column of zeroes (r5 )-in case 
some Ms,k contained more zeroes apart from those in row l5 and column r5 we would 
deduce that Ms,o has another row or column of zeroes . As in Theorem 2, this im
plies the result for 5-strips .  Similarly, to prove part 2 we use the sequence of matrices 
M = G7+3k + G8+3k + G9+3k k > 0. 7,k 7 7 7 ' -

To prove part 3 we have to be more careful than in the even case. We again divide the 
m-strip into left and right regions, each of them of widths n 1 and n2, with n 1 , n2 :::: 1 1  
and n 1 + n2 = n + 1 ,  overlapping at an intermediate m x 1 rectangle (see FIGURE 1 4) .  

Now, since the left path is not Im , we can trace two segments L 1 and L2 which 
split the left region in consecutive substrips of heights even, 5, and even (one of them 
may have zero height ! )  and so that the central substrip does not have as left path a left 
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Figure 14 Tiling a size appropriate m-strip with m odd. 
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exceptional one. On the right region we proceed similarly, obtaining segments R1 and 
R2 which divide it in substrips of heights even, 5 and even-being careful to choose 
the 5-strip in such a way that it does not have a right exceptional path as right border. 
In some cases where there is some L; and Rj with a difference in height of only 0 
or 1 units, we have to make room and move upwards or downwards one or two of 
those segments, substituting one or both of the 5 unit height substrips by 7 unit height 
substrips (see FIGURE 1 5). 

. .. . ... . 

!5 ! 

Figure 15 Turning 5-substrips into 7-substrips to make room. 

After doing this, we can proceed to construct a central m-binary path Wn1 which 
is going to split the initial strip into size appropriate substrips-taking care to avoid 
exceptional paths when closing the substrips with odd heights-and, by the previous 
parts and by Theorem 2, each of them can be tiled to give us a full tiling of the initial 
m-strip. • 
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REMARKS . The lower bound for n i n  the third part of theorems 2 and 3 can prob
ably be improved significantly. On the other hand, the lower bounds considered for 
m E {4, 5 ,  7}  are sharp. For example, FIGURE 1 1  shows a size appropriate 5-strip of 
order 9 which is not tilable. As an exercise, the reader can find examples of size ap
propriate, nontilable regions of maximum order for m = 4 and m = 7 .  

Generating functions for the number o f  tHings o f  rectangles. We define the gen
erating function fm (t) for the number of tilings of rectangles of height m as the formal 
power series 

where the coefficient of tn gives us the number of possible tilings of the rect
angle m x n .  Let us consider the matrix Gm as the matrix representation of a lin
ear automorphism in the JR-vector space V generated by the linear combinations 
with real coefficients of m-binary paths, where we work with the natural basis 
B = {0, T, . . .  , 2m 

- 1 } .  Let us now give to V the structure of an JR[t]-module by 
setting tv = Gm (v) ,  v E V. If we set w = 0, then the first coordinate of the vector 
G;:. ( W) is equal tO G;:. (0, 0] , the number of possible tilings Of an m X n rectangle. 
We are going to center our attention in the annihilator ideal Ann(w) of JR[t ] .  If a 
polynomial Pm U) = tk + ak_ 1 tk- l + · · · + a 1 t + a0 belongs to this ideal-as the 
characteristic polynomial Xm (t) of G m does-then 

and, in general, 

From this we obtain 

This recursive relation allows us to construct a rational function that, when expanded 
as a power series at t = 0, coincides with fm (t) (see [7, Chapter 1 ]) .  Again, some 
computer code can give us such rational expression for the functions fm (t )  for the 
first values of m--compare to [5] . This expression becomes quickly quite large, as 
TABLE 3 shows.  

Conc l uding remarks 

Some possible directions for further exploration in this area are the following: 

THings with other polyominoes. Is it possible to use a similar method to that used 
to prove Theorem 1 with other types of tilings by polyominoes, without getting into 
excessive difficulties? 

Properties of the sequence {Gm) .  What else can be said about these matrices? It 
would be particularly interesting to understand better the sequence {p (Gm ) }  of spec
tral radii-the spectral radius p (A)  of a matrix A is the maximum of the moduli of 
its eigenvalues-for they are closely related to the number of tilings of m x n rect-
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TAB L E  3:  Character ist ic po l y no m i a l s  and generati ng fu n ct ions for 2 � m � 6 

X2 (t) = t (t3  - 2) 
1 

h (t) = 

1 - 2t3 

X3 (t) = 12 (1 - 1 ) 2 (1 + 1 ) 2 (12 - 2) 
1 

!3 (1) = 

1 - 212 

X4 (1) = 14 (13  - 2) (19 - 1 016 + 2213 + 4) 

1 - 613 
!4 (1) = 

1 - 1 0t3 + 2216 + 4t9 

x5 (1) = t 14 (t6 + 213 + 5) (1 1 2 - 219 - 1 0316 - 28013 - 380) 

1 - 213 - 3 1 16 - 4019 - 20 1 1 2 
f5 (t)  = 1 - 213 - I 03t6 - 280t9 - 380t 1 2 

x6 (t) = t 1 8 (t - I )2 (t + l ) (t5  + t4 - 3t3 - 9t2 - 2t + 8)2 
(t6 + t5 - t4 - 5t3 - 2t2 + 41 - 2) 
(t 8  - 6t6 - 1 8t5 + 3t4 + 42t3 + 50t2 - 41 - 32)2 
(t 1 1  - 21 10 - 819 - 218 + 4317 + 4216 - 36t5 - 1 02t4 + 44t2 + 8t + 8) 

1 - 2t - 4t2 - 2t3 + 1 314 + 6t5 - 6t6 - 6t 7 
f6 (t) = 

I - 2t - 812 - 213 + 43t4 + 42t5 - 3616 - 1 02t7 + 4419 + 81 !0 + 81 1 1  

3 3 1 

angles as n increases indefinitely. Computer calculations give us the first values of this 
sequence: 

p ( Gz) = 1 .25992 

p (G3) = 1 .4 1 42 1 

p (G4) = 1 . 8706 1 

p (G5) = 2 .3 1 233 

p (G6) = 3 . 1 5986 

p (G7) = 4.06693 

p (G8) = 5 . 3 8729 

p (G9) = 7 .09995 

p (G 10) = 9 .36233 

p (Gn )  = 1 2 . 3453 
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I first encountered the name "Robert Adrain" on the cover of an early American mathe
matics text, A Course of Mathematics in Two Volumes for the Use of Academics as well 
as Private Tuition written by Charles Hutton ( 1 737- 1 823) [21] . Hutton was a self edu
cated British mathematician noted for his textbook writing, particularly books dealing 
with "practical mathematics" [20] . As an instructor at the Royal Military Academy in 
Woolrich, England, he originally compiled the work in three volumes during the years 
1 798- 1 80 1  for use by his cadets . Hutton's series was a compendium of the mathe
matics deemed necessary for a nineteenth century military career. Its scope went from 
basic arithmetic to the applications of calculus and stressed utility in such fields as 
statistics,  dynamics ,  the theory of projectiles and hydrology. When the United States 
Military Academy formally opened at West Point in 1 80 l ,  the study of this book was 
included in its syllabus.  Its contents became the basis for the first mathematics course 
taught at the new academy [4] . Adrain edited, revised, and condensed the British text 
and in 1 8 1 2  published an American version consisting of two volumes. The Ameri
can edition underwent four reprints and the British edition thirteen and remained in 
use at West Point until 1 823 .  Indeed, Hutton's  Mathematics was a very popular and 
useful book in its time. But 'Who was Robert Adrain, was he British or American?'  
Although I was familiar with some early American mathematicians and textbook writ
ers such as Bowditch, Greenwood, Pike, and Winthrop, the name Adrain eluded me. 
A small citation on the front cover of the text identified Adrain as Professor of Math
ematics and Natural Philosophy at Columbia College in New York City and a Fellow 
of the American Philosophical Society .  Robert Adrain apparently was an American ! I 
moved on to examine the contents of A Course of Mathematics, attempting to ascertain 
its mathematical relevance to a newly founded nation. 

A year later I undertook a similar task in examining the contents of the Mathemat
ical Correspondent, the first mathematics journal published in the United States of 
America [39]. This journal was founded and initially edited by George Baron ( 1 769-
1 8 1 2),  a contentious mathematician, who very briefly ( 1 80 1 - 1 802) served at West 
Point as the first civilian "Teacher of the Arts and Sciences to the Artillerists and Engi
neers" [18] . A quarterly publication, the Correspondent attempted to emulate the suc
cessful and influential Ladies Diary, a British periodical edited by Charles Hutton and 
devoted to problem solving. The Diary helped to popularize mathematics in eighteenth 
century England [28] . Baron felt that a similar effort was warranted in the United States 
to advance mathematical knowledge and help to form a mathematics community. This 
new American journal appeared in May of 1 804 and was mainly comprised of prob
lems and their eventual solutions as posed and posted by subscribers . Occasionally, 
it would include an essay expounding and explaining a selected topic in mathematics 
but it was mainly a problem solving journal as were most contemporary mathematical 
periodicals .  Problem solving was believed to provide a "key" for mathematical under
standing. In order to promote competition, Baron offered a $6 prize, a decent sum at 
this time, for the "best" correct solution offered for a submitted problem judged most 
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difficult or complex, the "prize problem". Problems involved such subj ects as: mone
tary exchange; navigation; commercial business transactions;  and land surveying and 
reflected the mathematical life and needs of nineteenth century America [38] . As a 
further inducement to readers, the names of all correct problem solvers were listed at 
the end of each edition. David Zitarelli in his examination of the Correspondent has 
singled out such listings as a valuable research tool: 

Overall ,  the list of contributors provides a priceless, 200-year-old portrait of 
America's first [mathematics] publication community, supplying a glimpse of 
the initial stage of what would develop into a legitimate community of research 
mathematicians a hundred years later [39, p.  8] . 

Among this listing, the name Robert Adrain stood out as the most prolific problem 
solver. In the short life of the Mathematical Correspondent (it only ran for 9 issues) 
Adrain submitted seven problems and solved eighty-nine, including fifteen prize prob
lems. Twice his solution for the "prize problem" claimed the reward. He remained 
unique in this accomplishment. Further, he contributed two articles to the j ournal : 
"Disquisition concerning the Motion of a Ship which is steered to a certain Point of 
the Compass" where he discusses the effects of the earth's  rotation on a moving ship 
[( 1 807), p .  1 03 ]  and "View of Diophantine Algebra" [( 1 807), pp. 2 1 2-24 1 ;  ( 1 808), 
pp. 7- 1 7] .  In the latter article Adrain discusses the solution of Diophantine equations 
and solves several specific problems illustrating solution techniques for these equa
tions. His instructions on this topic would continue in the second edition of the j ournal 
( 1 807). This article on Diophantine analysis was the first on the subject published in 
the United States. Obviously Robert Adrain was more than just a mathematical gad
about. He was certainly an avid problem solver but, mathematically speaking, was 
he much more? A quick internet search: i .e . ,  MacTutor History of Mathematics web
site [25] ,  revealed that, indeed, Robert Adrain was a recognized member of the early 
American mathematical community. Further, several published articles have examined 
the man's  life and work in some detail ,  notably: Julian Coolidge's "Robert Adrain 
and the Beginnings of American Mathematics", which was the text of his 1 925 re
tirement address as President of the Mathematical Association of America [10] ,  and 
Edward Hogan's "Robert Adrain :  American Mathematician" [19] . As a teacher, an ac
complished applied mathematician, a developer of curriculum, an editor, a writer, and 
an evangelist of mathematics, he was apparently a prime mover in early nineteenth 
century mathematics education but this particular distinction seems to remain unrec
ognized. A mystery remained. 

Adrain: The man and h i s  career 

Robert Adrain was born September 30, 1 775 in Carrickfergus, Ireland. His father was 
a school master and maker of mathematical instruments .  Robert's precocious intellect 
was recognized at an early age and his father set him on a classical education intended 
for the ministry. When he was fifteen years old, his parents died and Robert had to 
terminate his formal education to support himself and his four brothers and sisters . 
He assumed his father's vacant position as a teacher. Prospering in his new career, he 
expanded his knowledge and developed an interest in mathematics which he pursued 
through diligent self-study. Mathematics and its power fascinated him. In 1 798 Adrain 
married and also participated in the ill-fated Irish Rebellion of that year. The Rebellion 
left him a fugitive with a price of £50 on his head and he fled with his wife and a 
child to America. Landing in New York City during a cholera epidemic, the family 
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sought refuge in Princeton, New Jersey where acquaintances and the promise of a job 
awaited. Robert Adrain briefly served as a Mathematics Master at Princeton Academy 
before moving in 1 800 to York, Pennsylvania to assume the Head-Mastership of the 
York Academy. It was during his tenure at York that he began contributing to the 
Correspondent. In 1 805 he and his family moved to Reading, Pennsylvania where he 
became the principal of its academy [29] .  In 1 807 Baron was dying of consumption and 
gave up the editorship of the Correspondent. Adrain then became editor of the faltering 
journal and attempted to revive it. He failed and within a year it ceased publication 
[14] . 

In 1 808 he began his own journal, The Analyst or Mathematical Museum, fash
ioned after the Correspondent, but focused at a higher level of mathematical involve
ment both in problem solving and exposition. The cover of the first issue described its 
contents with the same words used to depict the Correspondent: 

Containing new elucidations, improvements, and 
discoveries, in the various branches of the mathematics ;  
with selections of new and interesting questions, 
proposed and resolved by ingenious correspondents . 

Although printers and the location of publication varied, this journal continued un
der Adrain's  editorship until 1 8 14 when, due to a lack of subscribers, it also ceased 
functioning. 

In 1 809 Adrain was appointed the first Professor of Mathematics at Queens College 
in New Brunswick, New Jersey. He retained this position until 1 8 1 3  when he was hired 
as a Professor by Columbia College in New York City. While at Columbia, serving 
as Professor of Mathematics and Physics ( 1 8 1 3-1 820) and Professor of Mathematics 
and Astronomy ( 1 820- 1 825),  he also contributed mathematical material to the Portico 
( 1 8 1 6-1 820) ; The Scientific Journal ( 1 8 1 8-1 8 1 9) ;  The Ladies ' and Gentlemen 's Di
ary ( 1 8 1 9-1 82 1 ); and the weekly, The New York Mirror and Ladies ' Literary Gazette 
( 1 823-1 826) where, through his writing, he would "tend to promote the invaluable 
science of mathematics" [( 1 823), 1 : 3 ] .  In 1 825 Adrain initiated a new journal, The 
Mathematical Diary, which he edited for a year before returning to teach again at 
Queens College. However he continued supporting and writing for this journal until 
its eventual demise in 1 832.  

It was during his transition to Columbia that his edited version of Hutton's Mathe
matics appeared. Besides condensing the material, Adrain reorganized it and corrected 
several mistakes,  specifically : on the reduction of fractions; application of logarithms ;  
definition o f  surds and improved geodetic estimates.  The reprinting o f  Hutton's book 
in 1 822 contained an essay by Adrain on elementary descriptive geometry [ vol. 2,  pp. 
561-622] . Gaspard Monge's Geometrie Descriptive had been published in 1 799. The 
first American appearance of this subject was Claude Crozet's ,  A Treatise on Descrip
tive Geometry for the Use of Cadets of the United States Military Academy ( 1 82 1 )  
[23, pp. 239-240] but this edition was for a limited audience. Crozet, a former military 
engineer for Napoleon, had been recruited by the Academy to impart an Ecole Poly
technique flavor to its teaching. Adrain's "essay" was the first popular exposition on 
this subject in the United States and appeared to be an independent work. When James 
Ryan's An Elementary Treatise on Algebra appeared in 1 824, it contained an appendix 
written by Adrain, "Obtaining an Algebraic Method of Demonstrating the Proposition 
in the Fifth Book of Euclid's  Elements" [30] . This appendix was extracted from an 
issue of the Analyst [ 1 8 14,  pp. 1-20] . 

In 1 827 Robert Adrain became Professor of Mathematics at the University of Penn
sylvania and also assumed the administrative post of Vice Provost of the University. 
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Figure 1 Ad ra i n 's arti c l e  i n  1 808 Analyst. 
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He resigned from the University i n  1 834, briefly returned to private teaching, and died 
at the family home in New Brunswick, New Jersey in August of 1 843 [2] . 

Adrai n :  The mathematic ian 

As a mathematician and a natural philosopher, Robert Adrian was a multi-faceted sci
entist whose many interests dispersed his talent in varied directions. Today he would be 
considered an applied mathematician reflecting his sentiments that "The last and high
est department of mathematical science consists in its applications to the laws and phe
nomena of the natural world." Among his fields of interests which included physics, 
astronomy, and geography, a paramount concern was dynamic geodesy. Specifically, 
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many of his mathematical investigations focused on the shape of the earth. Isaac New
ton's  theories of universal gravitational and planetary motion as derived in the Prin
cipia ( 1 687) had challenged classical models of the earth's  sphericity. If planetary 
attractions and interactions were the driving force of a moving earth, then its shape 
would be an oblate spheroid, flattened at the poles and bulging at the equator. How
ever, in contrast, Descartes'  flux and vortex theory of planetary behavior, Principia 
Philosophiae ( 1 644), also popular at this time, warranted an earth elongated at the 
poles .  In the early part of the eighteenth century, this controversy of Newtonianism 
versus Cartesianism waged in the intellectual circles of Europe. At times the term 
"Cartesianism" was replaced with the term "Cassinianism" as the astronomer, Jacques 
Cassini , had published his theories in 1 720 supporting the prolate spheroid concept of 
Descartes .  Expeditions sent out in 1 736 and 1 737 by the Observatoire Royal to ob
tain accurate measures of the Earth's latitude near the equator (Peru) and near a pole 
(Lapland) determined that the shape of the earth conformed to the Newtonian model. 
A quest for more exacting mathematical descriptions for the curvature of the earth 
now attracted some of the greatest mathematical minds of the mid and later parts of 
the eighteenth century. Maclaurin in his A Treatise of Fluxions ( 1 742) supported the 
theory of an oblate spheroid. Clairaut's Theorie de Ia figure de Ia terre in 1 743 geomet
rically modeled the earth as a rotating fluid, homogeneous, spheroid. Jean d' Alembert 
worked out methods for spheroid attraction in Recherches sur differents points im
portans du systeme du monde ( 1 754, 1 756). This theory was further refined by the 
appearance of Laplace's Traite de mecanique celeste ( 1 799) . Adrain read French and 
was familiar with these works . 

Mathematicians now worked to get a better fix on the shape of the earth. On the ba
sis of fifteen pendulum observations, Laplace calculated that an ellipsoid shaped earth 
would have an ellipticity of 1 /336.  Using Laplace's observations and compensating 
for error by employing his methods of least squares, Robert Adrain obtained a more 
accurate value of 1 /3 1 9. He published this finding in 1 8 1 8  in the Transactions of the 
American Philosophical Society [3] . When, in 1 832, Nathaniel Bowditch ( 1 793- 1 838) 
published the second volume of Laplace's Mecanique celeste in translation, he judi
cially selected a subset of 48 measurements out of an available 52 to apply Adrain's 
method of least squares and obtained a value of ellipticity of 1 /297 , as compared with 
Laplace's new published estimate of 1 /230. Modem measurements have confirmed 
Bowditch's  value. Adrain's estimate was more accurate than those offered by Laplace. 
Further, in his edited edition of Hutton's  Mathematics, Adrain corrected the given 
value for the diameter of earth at the equator, decreasing Hutton's estimate of 7957.7 5 
miles to 79 1 8 .7 miles.  Adrain's diameter was just 7 .7 1 miles short, deficient by less 
than 0. 1 % ,  of a modem, satellite obtained measurement. 

In many of his published questions, he seemed to favor queries that concerned the 
shape of the earth, for example, from The Analyst: 

• Which is further from the center of the earth, the mouth of the Mississippi River or 
its source? 
Adrain's answer: the mouth is two miles farther than the source [( 1 8 1 4) ,  p. 24] . 

• What figure will a perfectly elastic hoop take if it is acted on by two equal and 
opposite forces at the extremities of a diameter [ ( 1 808), p. 69] ? 

• What surface will such a hoop assume if of uniform strength, thickness and density 
when revolving with uniform angle of velocity in free and non-gravitating space 
[ ( 1 808), p. 1 1 1  ] ?  

• To determine the nature of the catenaria volvens, or the figure which a perfectly 
flexible chain of uniform density and thickness will assume, when it revolves with a 
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constant angular velocity about an axis, to which it is fastened at its extremities, in 
free and non-gravitating space (i .e . ,  Catenary of revolution) [( 1 808), p .  72] . 

Adrain worked out a solution for this last problem which led to elliptic integrals of a 
form that would not be solved until 1 860 by R. F. Clebsch at Gi::ittingen. Historically, 
this period provided a fertile climate for an understanding of elliptic integrals .  In Eu
rope such mathematical notables as: Legendre, Gauss, Abel, and Jacobi investigated 
their properties and sought solutions .  In 1 840 Joseph Liouville proved the integrals 
non-elementary in nature. Perhaps the last significant editing Adrain did was to publish 
a revised, corrected, and annotated edition of Thomas Keith's  A New Treatise on the 
Use of Globes, or a Philosophical View of the Earth and Heavens in 1 832.  In this work 
he challenged Keith's claim that the Andes were the highest mountains in the world. 
Adrain rightfully suggested that this characteristic belonged to the Himalayas. His 
claim was eventually confirmed by the Great Trigonometric Survey of India ( 1 802-
1 860) . During this survey, the height of a mountain indicated merely as "Peak 1 5" on 
British topological maps of India was determined to stand at 8850 meters-making it 
the highest mountain in the world ! In 1 865 this peak was formally named "Mt. Ever
est" in honor of Sir George Everest, British Surveyor General of India and Director of 
the survey. 

Adrain's eventual fame did not result from his work in geodesics but rather from the 
solving of a particular Analyst "Prize Problem," a $ 1 0  problem set by Robert Patterson 
( 1 743-1 824), Mathematics Professor at the University of Pennsylvania, consultant to 
the Lewis and Clark expedition, and writer of popular mathematics books : 

A polygonal piece of land is measured by means of a surveyor's chain and a 
circumferentor, a sighting device marking bearings, thus its sides are determined 

1 .  40 perches N 45o E 
2. 25 perches s 30° w 
3 .  30 perches s so E 
4. 29.6 perches w 
5. 3 1  perches N 20° E 

It is found that due to errors in the measurements, the polygon does not close, 
that is,  the terminal point does not coincide with the final point. How can the 
polygon be adjusted as to insure closure in the best manner [( 1 808), p. 42] ? 

This issue of measurement closure was, and still is in many places in the world, a 
common surveying problem. The survey was conducted using a circumferentor, basi
cally a directional compass that allows for taking bearings in a plane and a Surveyor's  
Chain, a Gunter's Chain, an actual metal chain of  1 00 links comprising 1 00 yards or  4 
standard perches, 1 6.5 feet each [24] . The prize was claimed by Nathaniel Bowditch 
( 1 773-1 838) recognized mathematician, astronomer, and surveyor. Bowditch under
took the problem under two assumptions: ( 1 )  error in the length of lines would be 
directly proportional to length and (2) errors in bearings were equal at each sighting. 
He laid out the region graphically and determined the actual closure error. Resolv
ing the error into vertical and horizontal components: 0. 1 0  perches, south; 0.08 perch, 
west, he then averaged his adjustment over the vertices ; triangulated the region and 
obtained an area 854.56 square perches. 

Of course, there are numerous ways to adjust for the error, but a solution is sought 
which systematically adjusts by placing the vertices into their most probable positions. 
In two supplementary solutions that he supplied, Adrain commented on and general-
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Figure 2 Illustration of the technique of chaining and triangulating a polygonal region 
A, 8, C, D, E, F of land from A Treatise on Surveying by John Gummere ( 1 841 ) .  

ized the problem by considering it  a purely geometric situation where the measuring 
of several lengths was required. Using Bowditch's assumptions, he approached the 
problem in a probabilistic manner and derived a probability distribution for the er
ror. Employing modern notation, the following is an outline of Adrain's derivation 
strategy. 

In measuring two successive lengths, AB and BC, along a line where m (AB) = 
a and m (BC) = {3, assume respective errors x1 , x2 are made where x1 + x2 = k, a 
constant. 

Under Bowditch's assumption (1), 

Xt X2 
� = fi• 

Now, let the probability of making error x1 be given by the function P (x1 , a) and x2 
by P(x2,  {3). Under the assumption these events are independent, the joint probability 
of the two events occurring is: 

Differentiating to maximize this function, we obtain: 

But since dx1 + dx2 = 0, 

P'(Xt . a) P'(x2 ,  {3) 
= 

P (Xt ,  a) P(x2,  {3) 
when 

Adrain now seeks to solve this problem in "the simplest manner possible" and as
sumes: 
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P'(x 1 , a) 
P (x1 , a) 

mX] 
a thus 

P (x 1 , a) = C exp ( m;!) . 

Since a maximum value is sought for P (x1 , a) ,  m must be negative. 

3 39 

When a series of several independent errors occur, their joint probability density 
has the function: 

Il P (xi , a) = C exp ( [ -m ] t xl ) 
i= I  2 i= I  a, 

2 
this will be maximized when L::7= 1 � is minimized, thus the "Method of Least 
Squares" (MLS). For more critical mathematical discussions of this derivation see 
[12, p.  1 77-78] ,  [11 ,  p.  67-68] , and particularly [37, pp. 588-594] . As was his fre
quent practice, Adrain then set about to derive another proof for the existence of 
the normal distribution of error. Under the different assumption that the measures of 
length and bearing were independent, he represented them as rectangular coordinates ,  
imposed geometric constraints that insured a symmetric distribution of  error around a 
sighting point, formulated a joint probability function and maximized it as before to 
obtain a corresponding probability density for a measurement error x : 

u (x) = Q exp( -nx2 /2) Q and n constants, determined by initial conditions 

A Method of Least Squares follows by the same argument as used in the previous 
proof. In this derivation several of Adrain's assumptions appear strained and the proof 
is weaker than its predecessor [12, p. 1 78] . To further illustrate and justify the method 
Adrain now supplies four practical applications:  to determine a point on a line from 
varied observations;  the arithmetic mean of the observations is found; to do the same 
for a point in space; establishing the center of gravity of the system; to correct errors 
of dead-reckoning at sea and to solve the surveying problem of Patterson [( 1 808), pp. 
93- 1 09] . 

Similar problems in geodesy and astronomy had also prompted Gauss and Legen
dre to use a Method of Least Squares. Legendre demonstrated the technique in his 
Nouvelles methods pour la determination des orbites des comites ( 1 805) .  Gauss intro
duced the method in Theoria Motus Corporum Coelestium ( 1 809), but claimed he had 
known of it as early as 1 795. Thus Adrain's priority does not rest in devising MLS but 
rather in deducing a general law for the normal distribution of errors and from that law 
obtaining a least squares procedure. Coolidge, in his 1 926 survey of Adrain's  work, 
seems inclined to consider this accomplishment the first real mathematical discovery 
made in America [11 ,  p. 75] .  Although Adrain's method was used by Bowditch and 
adopted in two texts of the time: Bowditch's The New American Navigator, 3rd ed. 
( 1 8 1 1 )  and Gummere's  Treatise on Surveying ( 1 8 1 7),  unfortunately, it received little 
further attention from the contemporary mathematical community and, in effect, re
mained forgotten for sixty years until Cleveland Abbe recalled the accomplishment in 
an 1 87 1  article [1] . In the interim, J. F. W. Herschel duplicated the second of Adrain's 
proofs in an 1 850 article [17] . It remains known as "Herschel 's  Proof." Since that time 
several researchers who have examined Robert Adrain's work on the distribution of 
errors in detail have concluded that it was an original and important contribution to 
mathematics and, indeed, the first mathematical discovery emanating from the new 
country of the United States of America [7, p. 68] , [21 ,  p. 5 8 1 ] ,  [ 11 ,  p.75 ; 3 1 ] .  
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Other questions posed and solved by Adrain over the years indicate that he was also 
knowledgeable in isoperimetrics and the calculus of variation, fields of mathematics 
that were attracting attention in the European scientific community. For Adrain, the 
self-educated mathematician, working basically alone without the support and encour
agement of fellow mathematicians, the scope and depth of his mathematical accom
plishments are impressive. 

Adrain: The teacher, educator 

In attempting to understand Robert Adrain and his work, it must be remembered that 
he was primarily a teacher. His teaching career was demanding and varied. As a Head
master of two early academies, i .e . ,  York and Reading, Pennsylvania and as a Professor 
of Mathematics/Natural Science at three fledging universities : Queens College, later to 
become Rutgers University, Columbia University, and the University of Pennsylvania, 
he was deeply involved in building departments , establishing curriculum and setting 
standards,  which were apparently very demanding. He could not abide any student 
who did not "know" his Euclid. To "know" Euclid, at this time, meant more than just 
being able to apply geometry, but rather to recite from memory theorems, proposi
tions, and proofs by their assigned number. While Adrain appears as something of a 
"Dickinsonian" schoolmaster with rod in one hand and textbook in the other, he was 
also described as a kind and patient teacher, who would gladly tutor students who 
sought him out for assistance. Cajori commented on Adrain's "most happy facility of 
imparting instruction" and described him as "the most prominent teacher of mathe
matics" [7, p. 67] of the period. He was referred to as "Old Bobbie" by his students 
at Columbia. These same students in 1 822 presented him with a portrait painted by 
Charles Cromwell Ingham as a testimony of their gratitude and respect, however, in 
later years at this same university he experienced difficulties in controlling his classes 
and resigned his position. His memory was failing and he no longer had a facility 
with foreign languages. He then returned to private tutoring and teaching at a grammar 
school until his death. Thus he remained a teacher of mathematics throughout his life. 

In his editing and founding of mathematics journals and pamphlets and participation 
in mathematics discussion groups, he was constantly reaching out to a larger popula
tion promoting the applications of mathematics and the techniques of problem solving. 
By generalizing problems and personally demonstrating that there were often several 
ways to solve a particular problem, Adrain, in his published work, was encouraging 
a wide range of mathematical exploration. Through such examples, he was actually 
teaching problem solving. His Analyst set high standards for mathematical exposition 
and this journal solicited contributions from the best American mathematicians of this 
period drawing them together as a scientific community [15]. The revision and editing 
of Hutton's  Mathematics was undertaken because he considered it "one of the best 
systems of mathematics in the English language stressing the most necessary and use
ful arts" [Preface, xi] relevant to the needs of the new nation. Adrain's exposition on 
Dioplantine algebra and descriptive geometry brought new knowledge to his reading 
public. His Mathematical Diary was the first American mathematics journal to include 
reviews of mathematical publications including some that appeared in Europe. It also 
saw the first published paper of Benjamin Pierce, who was then a student at Harvard 
but who would go on to become America's first native born mathematician of interna
tional recognition. Other college students followed Pierce's example by contributing to 
the Diary. Robert Adrain was an advocate of the efficacy of continental mathematical 
notation and helped promote it. In his work he used the differential system of Leibniz 
rather than the fluxions of Newton. It has been reported that while at Columbia he 
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Figure 3 Portrait of Adrain presented by his class at Columbia, 1 82 2 .  

34 1 

wrote a textbook on calculus but ultimately becoming dissatisfied with his results, he 
destroyed the manuscript [2] . It seems strange that despite all his publications he was 
extremely hesitant to publish unless he was completely satisfied with his results. He 
was a rigorous taskmaster, even with himself. Upon his death he left a large collection 
of papers and research notes, the study of which was undertaken by M. J. Babb of the 
University of Pennsylvania. Upon Babb's death in 1945, the papers were inadvertently 
destroyed, leaving many unanswered questions. 

How shou l d  history remember Robert Adrain ? 

Only two popular history of mathematics texts mention Adrain's work with the dis
tribution of errors and MLS, Cooke and Suzuki [10, p. 402]; [37, pp. 589-594] and 
official surveys of the history of mathematics education in the United States ignore his 
accomplishments completely [22, 32] . Certainly during his time, he was recognized 
as a premier mathematician in America. Held in high esteem by his colleagues, he 
was awarded honorary degrees by Queen's College, an MA in 1810, and an LLD by 
Columbia in 1818. Adrain was elected a Fellow of the American Philosophical Society 
in 1813 and a year latter obtained membership in the American Academy of Arts and 
Sciences. But still his legacy seems clouded. 

First, Adrain as a theoretical mathematician in the United States at the beginning 
of the nineteenth century was a man ahead of his time. From his published problems 
and work it appears that his ability in mathematics exceeded that of his peers who 
were skilled practitioners but not theorists. His interests were broader and his curiosity 
keener than those around him. While the majority of mathematicians in the new nation 
adhered to British mathematical nomenclature and models, Adrain was more in tune 
with continental accomplishments, particularly those of the French. As a result of these 
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junctures, his professional interactions supplied little support or momentum for his 
work. Further his constant call to administrative duties also limited his research efforts. 
Nor did the academic climate of his university teaching provide mathematical stimulus. 
In general, he lived and worked in a society that held mathematics suspect and viewed 
it with "gentlemanly distain" [9]. One may wonder how Robert Adrain's mathematical 
career would have flourished under different circumstances; particularly had he lived 
and worked in Europe [16]. 

Figure 4 Nathaniel Bowditch, whose reputation overshadowed that of Robert Adrain. 

Adrain's journal editorship was also fraught with frustrations. By the time Baron 
relinquished his charge of the Correspondent to Adrain, he had alienated much of its 
readership by his caustic comments and personal attacks on the scientific community 
[15]. Subscriptions were failing and the journal was basically defunct. Despite a sin
cere plea by Adrain that his tenure would be different and accommodating: 

The editor begs leave to assure the friends of science and of man, that nothing 
unbecoming a Christian and a gentleman shall be suffered to make its appearance 
in the work as long as it shall be under his direction. No affected superiority shall 
be shewn, nor contemptuous treatment of such as differ from us in opinion, or 
fall into errors [(1807), preface, vi]. 

The journal still faltered. In his Analyst endeavor, he strove to supply a more advanced 
approach to mathematical thinking but probably exceeded the ability of much of his 
audience. Printers' mistakes were frequent and the quality of printing in general was 
poor and since he had to prepay for the issues, acceptable or not, he was placed in 
a financial disadvantage. His most successful publishing effort was the Mathematical 
Diary which ran from 1825 to 1832. Perhaps the times were becoming more conducive 
to mathematical exposition. However, he retained the journal's editorship for only a 
year before relocating from New York City to Rutgecs. His wife, Ann, refused to live 
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in large cities, forcing him to  maintain two households. Adrain was always pressed for 
funds to support his large family (seven children) and his work. 

Two circumstances contributed to the failure to receive more acclaim for his work 
on error distributions. First, it is known that he was aware of the work of Legendre 
and Gauss who also concerned themselves with error distributions and MLS ; how
ever authorities who have examined this work carefully, support Adrain 's  originality 
and priority [11 ] . By modem standards of rigor, his derivation of the error distribution 
is flawed in its premises. In accepting Bowditch's initial assumption that the error in 
determining a straight line is proportional to its length, Adrain placed himself in the 
position of a nineteenth century surveyor when the determination of a straight line 
through forest and over rugged terrain required many sightings, each subject to error. 
The physical and technical difficulties of American frontier surveying have recently 
been commented upon in Linklater' s  Measuring America [24] . [The author encoun
tered this task while chaining land for jungle settlements in Southeast Asia during 
the 1 960s] . Thus, in a practical field situation, error could be considered proportional 
to length. Adrain also assumed that two sighting errors (length) were independent; 
however, in his derivation, he makes them proportional to each other-violating in
dependence.  Yes, under rigorous inspection his methods were faulty. But in this time 
of mathematical exploration and adventurism the methods of many mathematicians, 
including even those of Gauss and Legendre, were suspect. Often in the case of more 
well known mathematicians, their reputations deflected open criticism. Formalism and 
rigor were sacrificed for immediate, useable, results. 

Adrain's place in history must be judged by the conditions and standards of his time. 
Julian Coolidge after closely examining the mathematical career of Robert Adrain and 
his colleagues concluded that: 

There can be no question as to his outranking every American mathematician 
who was really his contemporary [11 ,  p. 75] .  

Working in isolation from the great mathematics research centers of  Europe and with 
little institutional and societal support he still identified and probed some of the out
standing mathematical issues of the early nineteenth century. Just how great a math
ematician he was is still open to judgment. However less debatable are his numerous 
contributions to the cause of promoting mathematics and popularizing its study in early 
American society. The real mystery is "Why isn't Robert Adrain better recognized for 
his work as a mathematics educator?" Ultimately, he should be recognized primarily 
as a mathematics educator, perhaps America's first mathematics educator. 
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Rotat ions, be l ts, braids, sp i n - 1  /2 part ic les, and al l that 

The space of all three-dimensional rotations is usually denoted by 5 0 (3) .  This space 
has a well-known and fascinating topological property-a complete rotation of an ob
ject is a motion which may or may not be continuously deformable to the trivial motion 
(i .e . ,  no motion at all) but the composition of two motions that are not deformable to 
the trivial one gives a motion, which is .  (Here and further down by "complete rota
tion" we will mean taking the object at time t = 0 and rotating it as t changes from 0 
to 1 arbitrarily around a fixed point, so that at t = 1 the object is brought back to its 
initial orientation.)  A rotation around some fixed axis by 360° cannot be continuously 
deformed to the trivial motion, but it can be deformed to a rotation by 360° around any 
other axis (in any direction) . However, a rotation by 720° is deformable to the trivial 
one. 

You may try to see some of this at home by performing a complete rotation of a box, 
keeping one of the vertices fixed. Let us first rotate the box around one of the edges and 
then try to deform this motion to the trivial one. If you follow a vertex on one of the 
non-fixed edges, it will trace a large circle on a sphere. Now, for any complete rotation 
of the box (around the same fixed vertex) the vertex we are following will have to 
trace some closed path on that sphere. So as you try to deform continuously the initial 
motion to the trivial one, the vertex you are tracking will have to trace smaller and 
smaller paths, starting from the large circle and ending with the constant path, which 
is just the initial and final point. As you do this,  one of the other vertices, which was left 
fixed by the initial motion, will start tracing larger and larger paths approaching a large 
circle on a sphere . Thus in effect, trying to contract a rotation around one of the edges 
to the trivial one, you only managed to deform it to a rotation around a different edge. 
There is some intrinsic "topological obstacle" to contracting such motions. You would 
need a considerable imagination to see the second property-if your initial motion 
consists of two full rotations around some axis, it can be deformed to the trivial motion. 
There are a few famous "tricks" relying on this property, most notably "Dirac 's  belt 
trick" and "Feynman' s plate trick." In the "belt trick" you fasten one end of the belt and 
rotate the other end (the buckle) by 720° . Then, without changing the orientation of the 
buckle, you untwist the belt, by passing it around the buckle. (See a nice animation on 
Greg Egan 's web-page [6] and Java applets analyzing the "tricks" by Bob Palais [9] .)  
The "plate trick" is essentially the same. You put a (full) plate onto your palm and, 
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without moving your feet, rotate it by 720° , at the same time moving it under your 
armpit and then over your head. You will end up in your initial position, your arm and 
body untwisted. 

These experiments should leave you with a few questions: Is the complete rotation 
around one axis really not contractible to the trivial motion? If you have two arbitrary 
motions that are not contractible, can you always deform one to the other? If you com
pose two of the latter do you always get a motion that is contractible? (The affirmative 
answer to the last question actually will follow from the affirmative answer to the pre
vious one together with the "belt trick" effect.) We will describe an experiment, which 
could be called the "braid trick" and which will give us enough machinery to answer 
these questions rigorously. In the process, we exhibit an intriguing relation between 
three-dimensional rotations and braid groups.  

Complete rotations of an object are in one-to-one correspondence with closed paths 
in S 0 (3) .  Two closed paths in a topological space with the same initial and final point 
(base point) are called homotopic if one can be continuously deformed to the other. 
Since homotopy of paths is an equivalence relation, all paths fall into disjoint equiv
alence classes. The set of homotopy classes of closed paths becomes a group when 
one takes composition of paths as the multiplication and tracing a path in the opposite 
direction as the inverse. This group, noncommutative in general, is one of the most 
important topological invariants of a space and was first introduced by Poincare. It is 
called the fundamental group or the first homotopy group and is denoted by n1 • Thus 
for the space of three-dimensional rotations the topological property discussed so far is 
written in short as n1 ( S 0 (3)) � Z2 • This means that all closed paths in S 0 (3) starting 
and ending at the same point, e .g . ,  the identity, fall into two homotopy classes-those 
that are homotopic to the constant path and those that are not. Composing two paths 
from the second class yields a path from the first class. 

A topological space with a fundamental group Z2 is a challenge to the imagination
it is easy to visualize spaces with fundamental group Z (the punctured plane), or 
Z * Z · · · * Z (plane with several punctures), or even Z E9 Z (torus), but there is no 
subspace of R3 whose fundamental group is Z2 • 

The peculiar structure of S 0 (3) plays a fundamental role in our physical world. 
There are exactly two principally different types of elementary particles, bosons, hav
ing integer spin, and ferrnions, having half-integer spin, with very distinct physical 
properties. The difference can be traced to the fact that the quantum state of a boson is 
described by a (possibly multi-component) wave function, which remains unchanged 
when a full (360° ) rotation of the coordinate system is performed, while the wave func
tion of a fermion gets multiplied by - 1  under a complete rotation. Somewhat loosely 
speaking, the second possibility comes from the fact that only the modulus of the 
wave function has a direct physical meaning. Mathematical physicists have realized 
long ago [11 ,  2] that the wave function has to transform properly only under the action 
of transformations that are in a small neighborhood of the identity. When a "large" 
transformation is performed on the wave function, like a rotation by 360° , it can be 
done by a sequence of "small" transformations, but the end point-the transformed 
wave function-need not coincide with the initial one. On the other hand, if you take 
a closed path in S 0 (3) which remains in a small neighborhood of the identity, the 
transformed wave function at the end must coincide with the initial one. In fact what 
is important is whether the closed path is contractible to the identity or not. It is quite 
obvious from continuity considerations that the end-point wave function must coin
cide with the initial one if the path in S 0 (3) is contractible. Thus when you do two 
full rotations, i .e . ,  rotation by 720°

' 
the wave function should come back to the initial 

one which implies that the transformation, corresponding to a 360°-rotation must be 
of order 2. 
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There are several standard ways o f  showing that n1 (S 0 (3))  � Z2 • The one that 
is best known uses substantially Lie group and Lie algebra theory. The space S 0 (3) 
can be thought of as the space of 3 x 3 real orthogonal matrices with determinant 
1 .  It has the structure of a closed three-dimensional smooth manifold embedded in 
JR9 (a higher-dimensional analog of a closed smooth surface embedded in JR3) .  It is 
also a group and the group operations are smooth maps.  Such spaces are called Lie 
groups.  Another Lie group, very closely related to S 0 (3) is S U (2)-the group of 
2 x 2 complex unitary matrices with determinant 1 .  It is relatively easy to see that 
topologically S U (2) is the three-dimensional sphere S3 . Locally the two groups are 
identical, i .e . ,  one can find a bij ection between open neighborhoods of the identities 
of both, which is a group isomorphism and a (topological) homeomorphism. Glob
ally, however, this map extends to a 2-1 homomorphism S U (2) --+ S 0 (3 ) ,  send
ing any two antipodal points on S U (2) to a single point on S 0 (3 ) .  In topological 
terms this map is called a double covering of S 0 (3 ) .  The topology of S 0 (3)  can 
now be easily understood-it is the three-dimensional sphere S3 with antipodal points 
identified. 

In the present paper we describe an alternative way of "seeing" and proving that 
n1 (S 0 (3))  � Z2 . 1t does not use Lie groups or even matrices. It is purely algebraic
topological in nature and very visual. It displays a simple connection between full 
rotations (closed paths in S 0 (3)) and braids. We believe that this is an interesting 
way of demonstrating a nontrivial topological result to students in introductory geom
etry and topology courses as well as a suitable way of sparking interest in braids and 
braid groups, which appear naturally in various mathematical problems, from algebraic 
topology through operator algebras to robotics and cryptography. 

Relationships between braids and homotopy groups appear at different levels .  To 
begin with, braid groups can be defined as the fundamental groups of certain configu
ration spaces. Braids have been applied (see, e .g . ,  [4]) to determining homotopy groups 
of the sphere S2 • In this paper, we present yet another, simple connection between braid 
groups and a fundamental group. 

The goal of this paper is mostly pedagogical-presenting in a self-contained and 
accessible way a set of results that are basically known to algebraic topologists and 
people studying braid groups .  The fact that the first homotopy group of S 0 (3)  can be 
related to spherical braids is a special case (in disguise) of the following general state
ment [7] : "The configuration space of three points on an r-sphere is homotopically 
equivalent to the Stiefel manifold of orthogonal two-frames in r + ! -dimensional Eu
clidean space." Fadell [7] considers a particular element of n1 (S 0 (3))  and uses the fact 
that it has order 2 to prove a similar statement for a corresponding braid. Our direction 
is the opposite-we analyze braids to deduce topological properties of S 0 (3) . 

In the next section we describe a simple experiment that actually demonstrates the 
Z2 in three-dimensional rotations. Then in section 3 we give a formal treatment of that 
experiment. We construct a map from n1 (S 0 (3))  into a certain factorgroup of a sub
group of the braid group with three strands . We prove that this map is an isomorphism 
and that the image is Z2 • 

The braid trick 

Take a ball (a tennis ball will do) and attach three strands to three different points 
on its surface. Attach the other ends of the strands to three different points on the 
surface of your desk (FIGURE 1 ) .  Perform an arbitrary number of full rotations of the 
ball around arbitrary axes. You will get a plaited "braid". (When you do the rotations, 
your strands will have to be loose enough. Still, if you are performing just rotations 



348 MATHEMATICS MAGAZI N E  

of the ball without translational motions, what you will get i s  a "braid" and not the 
more complicated object "tangle" in which each strand can be knotted by itself. Even 
though this more complicated situation can be handled easily, we prefer to avoid it.) 
Now keep the orientation of the ball fixed. If the total number of full rotations is even, 
you can always unplait the "braid" by flipping strands around the ball. If the number 
of rotations is odd you will never be able to unplait it, but you can always reduce it 
to one simple configuration, e.g. ,  the one obtained by rotating the ball around the first 
point and twisting the second and third strands around each other. 

Figure 1 Rotating a ball with strands attached . 

As we might expect, rotations that can be continuously deformed to the trivial ro
tation (i.e., no rotation) lead to trivial braiding. At this point we can only conjecture 
from our experiment that the fundamental group of S 0 (3) contains Z2 as a factor. 

Relating th ree-dimensional rotations to braids 

With each closed path in S 0 (3) we associate three closed paths in JR3 starting at the 
sphere with radius 1 and ending at the sphere with radius 1/2. We may think of con
tinuously rotating a sphere from time t = 0 to time t = 1 so that the sphere ends up 
with the same orientation as the initial one. Simultaneously we shrink the radius of 
the sphere from I to 1/2 (see FIGURE 2). Any three points on the sphere will trace 
three continuous paths in JR3 , which do not intersect each other. Furthermore, for fixed 
t the three points on these paths lie on the sphere with radius 1 - t /2. To formalize 
things, let w (t), t E [0, 1] be any continuous path in S 0 (3) with w (O) = w (l) = I .  
w(t) acts on vectors (points) in  JR3 • Take three initial points in  IR3 , e.g., � = ( 1 ,  0 ,  0) , 
x5 = ( -1/2, J3J2, 0) , x� = ( -1/2, -JJ/2, 0) . Define three continuous paths by 

x; (t)  := (1 - t /2)w (t ) (�) . t E [0, 1], i = 1, 2, 3 . 

In this way we get an object that will be called a spherical braid-several distinct 
points on a sphere and the same number of points, in the same positions, on a smaller 
sphere, connected by strands in such a way that the radial coordinate of each strand is 
monotonic in t .  
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Figure 2 A "spherical braid" and a normal bra id .  
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We can map our spherical braid to a conventional one using stereographic pro
jection (FIGURE 2). First we choose a ray starting at the origin and not intersecting 
any strand. The ray intersects each sphere at a point, which we can consider as the 
"north pole". Then we map stereographically, with respect to its "north pole," each 
sphere with radius 1 /2 ::::: p ::::: 1 (minus its "north pole") to a corresponding (horizon
tal) plane. Finally we define the z-coordinate of the image to be z = - p .  

Recall the usual notion of braids, introduced by Artin [1] .  (See also [4] for a con
temporary review of the theory of braids and its relations to other subjects.)  We take 
two planes in IR3 , let's say parallel to the X Y plane, fix n distinct points on each plane 
and connect each point on the lower plane with a point on the upper plane by a contin
uous path (strand). The strands do not intersect each other. In addition the z-coordinate 
of each strand is a monotonic function of the parameter of the strand and thus z can 
be used as a common parameter for all strands. Two different braids are considered 
equivalent or isotopic if there exists a homotopy of the strands (keeping the endpoints 
fixed), so that for each value of the homotopy parameter s we get a braid, for s = 0 
we get the initial braid and for s = 1 the final one. When the points on the lower and 
the upper plane have the same positions (their x and y coordinates are the same), we 
can multiply braids by stacking one on top of the other. Considering classes of isotopic 
braids with the multiplication just defined, the braid group is obtained. Artin showed 
that the braid group Bn on n strands has a presentation with n - 1 generators and a 
simple set of relations-Artin's braid relations. We give them for the case n = 3 since 
this is the one we are mostly interested in. In this case the braid group B3 is generated 
by the generators u1 , corresponding to twisting of the first and the second strands, and 
u2, corresponding to twisting of the second and the third strands (the one to the left 
always passing behind the one to the right) (FIGURE 3). These generators are subject 
to a single braid relation (FIGURE 4): 

Figure 3 The generators ui and u2 of 83 . 

( 1 )  
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Figure 4 The bra i d  re l at ion for 83 . 

We say that B3 has a presentation with generators a1 and a2 and defining relation given 
by Equation 1 ,  or in short: 

(2) 

In our case, since a full rotation of the sphere returns the three points to their original 
positions, we always get pure braids, i .e . ,  braids for which any strand connects a point 
on the lower plane with its translate on the upper plane. Pure braids form a subgroup of 
B3 which is denoted by P3 • Note that intuitively there is a homomorphism rr from B3 
to the symmetric group S3 since any braid from B3 permutes the three points . Formally 
we define rr on the generators by 

rr (a1 ) ( 1 ,  2, 3) = (2, 1 ,  3) , rr (a2) ( 1 ,  2, 3) = ( 1 ,  3 ,  2) (3) 

and then extend it to the whole group B3 (it is important that rr maps Equation 1 to 
the trivial identity). Pure braids are precisely those that do not permute the points and 
therefore we can give the following algebraic characterization of P3 : 

P3 : =  Ker rr . 

Alternatively, S3 is the quotient of B3 by the additional equivalence relations a/ � I ,  
i = 1 ,  2 and i f  N is  the minimal normal subgroup containing a/, then rr : B3 -+ B3 j N 
is the natural projection. It is then easy to see that the kernel of rr has to be a product 
of words of the following type: 

The whole subgroup P3 can in fact be generated by the following three twists 
(FIGURE 5) 

a · - a2 1 2  · - 1 •  (4) 

In our construction so far we mapped any closed path in S 0 (3) to a spherical braid 
and then, using stereographic projection, to a conventional pure braid. The last map, 
however, depends on a choice of a ray in JR3 and, what is worse, spherical braids 
that are isotopic (in the obvious sense) may map to nonisotopic braids. To mend this,  
we will identify certain classes of braids in P3 • Namely, we introduce the following 
equivalence relations (see FIGURE 6) : 

r1 : =  a1afa1 � I , r2 := afaf � I , r3 : =  a2afa2 � I . (5) 

In our model with the tennis ball the elements ri , i = 1 ,  2,  3 correspond to flips of the 
i th strand above and around the ball .  Such motions lead to isotopic spherical braids, 
as will be shown later. (The choice of these particular three flips given in Equation 5 is 
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Figure 5 The generators a1 2 ,  a1 3 ,  and a23 of P3 . 

3 5 1  

based on the following intuition, coming from the experiment-thinking of the three 
strands of the trivial braid as arranged in a circle, we pull one of them out and flip 
it above and around the ball clockwise to obtain one of the r; or counterclockwise to 
obtain its inverse. Thus in FIGURE 6 the middle strand is  in the background, while the 
first and third are in the foreground. We do not take "more complicated" elements, like 
e.g. ,  a fa} which would correspond to first pulling the middle strand between the other 
two to the foreground and then performing the flip r1 , i .e . ,  afaf is obtained from r1 by 
conjugating it with a1 and its inverse.) 

'U 
) 

( 
Figure 6 The fl i ps r1 , r2 , and r3 . 

Note. When any strand in any part of the spherical braid crosses the ray which we 
use for the stereographic projection, that projection will map the spherical braid to 
a different (Artin) braid, which we should consider as identical with the initial one. 
This means that we have to factorize by the normal closure in B3 (not in P3 !) of the 
generators r; , i = 1 ,  2, 3, i .e . ,  the smallest normal subgroup in B3 containing these 
three generators. This would then allow us to set to I any r; (or its inverse) in any part 
of a word. We see easily that only one of the generators is needed then, since the other 
two will be contained in the normal closure of the first. We noticed experimentally, 
however, that we managed to untie any trivial braid j ust by a sequence of the three 
flips r; defined in Equation 5 and their inverses, performed at the end of the braid. At 
the same time a nontrivial braid, corresponding to an odd number of rotations, cannot 
be untied even if we allow flips in any part of the braid. This can only be true if the flips 
r; generate a normal subgroup in B3 (which of course then coincides with the normal 
closure of any of the r; and is also normal in P3) .  

LEMMA 1 .  The subgroup R C P3, generated by ri > r2, r3 is  normal in B3 • 

Proof. We need to show that we can represent all conjugates of r; with respect 
to the generators of B3 and their inverses as products of the r; and their inverses. 
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Straightforward calculations, using repeatedly Artin's braid relation (Equation 1 )  give 
the following identities: 

al rl aJ-
1 = r2 , 

- ] - 1 a1 r2a1 = r2r1 r2 , 
- 1 - ]  a1 r3a1 = a1 r3a1 = r3 , 

- 1 - 1 a1 r1 a1 = r1 r2r1 ,  
- 1 - 1 - 1 a2 r2a2 = r 1 r3r 1 = r2 r3r2 , 

a2r1 a2
- 1 = a2-

1 r1 a2 = r1 ,  
- I  a2r2a2 = r3 , 
- 1 - 1 - 1 a2r3a2 = r1 r2r1 = r3r2r3 

a1-
1 r2a1 = r1 ,  

a2-
1 r3a2 = r2 . 

(6) 

We demonstrate as an example the proof of the first identity in the second line. We 
have 

and therefore 

a1 a2a1 = a2a1a2 
2 2 a2a1 a2a1 a2a1 = a2 a1 a2 a1 

a1 a2a1 a2a1 a2 = a{a1 a{a1 
2 2 2 2 a1a2 a1 a2 = a2 a1 a2 a1 

2 2 2 -2 a1a2 a1 = a2 a1 a2 a1 a2 
3 2 - 1 2 2 2 -2 -2 a1 a2 a1 = a1 a2 a1a2 a1 a2 a1 , 

By suitable full rotations we obtain all generators of P3 • For example, a 1 2 is obtained 
by rotating around the vector x� = ( - 1 /2, - -J3 /2, 0) and it twists the first and the 
second strand. Furthermore, homotopies between closed paths in S 0 (3) correspond 
to isotopies of the spherical braids and thus homotopic closed paths in S 0 (3) will 
be mapped to the same element in the factorgroup P3j R. Hence we have a surjection 
n1 (50 (3)) --+ P3j R.  

PRO POS ITION 1 .  The factorgroup P3/ R is isomorphic to Z2. 

Pro(�{. To make notation simpler we use the same letter to denote both a represen
tative of a class in P3/ R and the class itself, hoping that the meaning is clear from the 
context. In P3 j R we have 

and 

The following sequence of identities follow one from another: 

a2a� = a�a2 , 

a2a1a2a1 = a(a2 , 

a1 a:£1a1a2 = a�a2 , 

a1 a2a� = a(a2 , 

a1a2a1 a2a1 = a�a2 , 

I =  a� . 

We have used twice the braid relation (Equation 1 )  and the first equivalence relation in 
Equation 5 .  In a completely analogous way we prove 

ai = I. 
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Combining the last two results with the equivalence relations (Equation 5)  we finally 
get 

(7) 

It is now clear that in P3j R the three generators, defined in Equation 4 reduce to one 
element of order 2. Therefore they generate Z2 . This completes the proof. • 

So far we have constructed a map n1 (S 0 (3)) --+ P3j R, which is onto by construc
tion, and we have shown that the image is isomorphic to Z2 . To show that this map is 
actually an isomorphism, we only need: 

PROPOSITION 2 .  The map n1 (S0 (3)) --+ P3j R is a monomorphism. 

Proof. It suffices to show that if a closed continuous path in S 0 (3) is mapped to a 
braid in R, then this path is homotopic to the constant path. The proof basically reduces 
to the following observation - any spherical braid which is pure (the strands connect 
each point on the outer sphere with the same point on the inner sphere) determines a 
closed path in S 0 (3) .  Two isotopic spherical pure braids determine homotopic closed 
paths in S 0 (3) . Indeed, recall that for a spherical braid we can parametrize the points 
on each strand with a single parameter t and that for a fixed t all three points lie 
on a sphere with radius 1 - t /2. These three ordered points xi (t) ,  i = 1 ,  2, 3 give 
for every fixed t a nondegenerate triangle, oriented somehow in IR3 . Let l(t) be the 
vector, connecting the center of mass of the triangle with the vertex x1 (t ) ,  i .e . ,  l (t)  = 
x1 - (x 1 (t )  + x2 (t) + x3 (t) )/3 and define e 1 (t) : =  l ( t )/ l l l (t) l l .  Let e3 (t) be the unit 
vector, perpendicular to the plane of the triangle, in a positive direction relative to the 
orientation ( 1 ,  2, 3) of the boundary. Finally, let e2 (t) be the unit vector, perpendicular 
to both e1 (t) and e3 (t) ,  so that the three form a right-handed frame. Then there is a 
unique element w (t) E S 0 (3) sending the vectors e6 = ( 1 ,  0, 0) , e6 = (0, 1 ,  0) , e6 = 
(0, 0, 1 )  to the triple ei (t) .  According to our definitions, w (0) = w ( 1 )  = I and we 
get a continuous function w :  [0, 1 ]  --+ S0 (3) , where continuity should be understood 
relative to some natural topology on S 0 (3) ,  e.g. ,  the strong operator topology. 

Recall that for any spherical braid the i th strand (i = 1 ,  2, 3) starts at the point x� 
and ends at the point x�/2. If we have two isotopic spherical braids, by definition there 
are continuous functions xi (t , s ) , i = 1 ,  2, 3, such that xi (t , s) is a braid for any fixed 
s E [0, 1 ], xi (0, s) = x� , xi ( 1 ,  s) = x�/2, xi (t , 0) give the initial braid and xi (t , 1 )  give 
the final braid. By assigning an element w (t ,  s) to any triple xi (t , s) as described, we 
get a homotopy between two closed paths in S 0 (3) . 

Let w'(t) be a closed path in S 0 (3) which is mapped to a braid b in the class r1 E R.  
We can construct a spherical braid, whose image is isotopic t o  that braid. Let z b e  the 
point on the unit sphere with respect to which we perform the stereographic projection. 
This can always be chosen to be the north pole or a point very close to the north pole 
(in case a strand is actually crossing the axis passing through the north pole) . Note that 
the points x� , i = 1 ,  2, 3 are on the equator. Construct a simple closed path on the unit 
sphere starting and ending at x6 and going around z in a negative direction (without 
crossing the equator except at the endpoints) .  Thus we have two continuous functions 
cp (t ) ,  8 (t ) ,  t E [0, 1 ]-the spherical (angular) coordinates describing this path. Let 
x1 (t) be the point in JR3 whose spherical coordinates are p (t)  := 1 - t/2, cp (t ) ,  8 (t )  
and let xi  ( t )  : =  ( 1  - t j2)x� ,  i = 2 ,  3 .  These three paths give the required spherical 
braid. It is isotopic to the trivial braid, coming from the constant path in S 0 (3) ,  and at 
the same time it is isotopic to the preimage of b under the stereographic projection. In 
this way we see that w' (t) must be homotopic to the constant path. Obviously a similar 
argument holds with r1 replaced by r2 and r3 or the inverses. Since any element in R 
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i s  a product of these generators, and since products of isotopic braids give isotopic 
braids, this completes the proof. • 

Further discussion, resu l ts, and generalizations 

When we look at  a complicated braid that has been plaited by numerous different ro
tations of our ball, it may seem difficult to tell whether it can be untied (by performing 
flips r; ) or not. Actually, there is a simple criterion to determine this.  Assume that the 
braid is represented as some word in the Artin generators : 

(8) 

Define the following invariant, called the length of the braid: 

p(b) := m 1 + n 1 + mz + nz + · · · + mk + nk . (9) 

Note that m; and n; can be any integers (positive, negative or zero). We observe that the 
number p (b) is invariant for Artin's braid, since applying the braid relation (Equation 
1 )  inside any word does not change p (b) of that word. Next, since we know that our 
braid is pure, it can be written as a product of the generators a 1 z , a 1 3 ,  and az3 defined 
in Equation 4 and their inverses. Note that each of these generators has p(b) = 2. 
So we conclude that p(b) is even. Now, if p (b) = 0 (mod 4) this means that b is a 
product of even number of the generators aij (and their inverses). We saw in the proof 
of Proposition 1 that in P3 I R the three generators aij reduce to one element of order 2, 
so p(b) = 0 (mod 4) implies that b is  trivial in P3/ R or can be untied by performing 
flips . On the other hand, if p (b) = 2 (mod 4), then b is a product of odd number of 
generators aij (and their inverses) and thus reduces to the single nontrivial element 
of P3 / R. In this way we have provided a (simple) algorithm solving the so-called 
word problem for P3/ R, i .e . ,  one can decide in a finite number of steps algorithmically 
whether two words represent the same group element or not. 

There is a more intriguing aspect of our "puzzle"-given a complicated braid which 
is trivial in P3/ R, can we provide a recipe for a sequence of flips r; that will untie it? 
(When one experiments with the tennis ball one usually intuitively finds a sequence of 
flips, but can we program a computer to do it?) Mathematically the problem reduces 
to the following: given an element b E R c B3 , which is written in terms of the gener
ators of B3 , can we give an algorithm to rewrite this element in terms of the generators 
of R? The authors don' t  know the answer to this question, though it may be simple. We 
should point out that such questions about the braid group, its subgroups and factor
groups have sparked considerable interest, especially in connection with their possible 
use in cryptography (see, e .g . ,  [5] for examples). 

Figure 7 The fu l l  twi st d i n the case n = 3 .  
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We can easily understand the "belt trick" or the "plate trick" using algebra. In our 
experiment with the ball let's perform two full rotations (full twists) around a vertical 
axis (FIGURE 8) . . A single full twist, as in FIGURE 7 leads to the braid d :=  (u1u2)3 • 
For two full twists, using twice Artin's braid relation, we get: 

d2 = (O'J0'2)6 = (0'20'J )6 = 0'20'J0'20'J0'20'J (0'20'J )3 = 0'20'JO't0'20'JO') (0'20'J )3 
2 2 2 = r30'1 0'20'J0'20'J0'20'J = r3u1 0'20'20't0'2 O'J = r3r2r1 

Therefore we can unplait the braid d2 by applying the sequence of flips r31 , r21 , r! 1 

(in that order). Intuitively this is the same as flipping the whole bunch of three strands 
together above and around the ball. It is also obvious that it should not matter with 
which strand we. start, so cyclic permutations of the above sequence of flips should 
also unplait the braid. If we look at some of the identities in Equations 6 we see indeed 
that r3r2r1 = r2r1 r3 = r1 r3r2. 

Figure 8 The "belt trick." 

There is an obvious generalization of some of the results of the previous sections to 
the case n > 3. The minimal number of strands that is needed to capture the nontrivial 
fundamental group of S 0 (3) is n = 3. When n > 3 any full rotation will give rise to 
a pure spherical braid but the whole group of pure braids will not be generated in this 
way. It is relatively easy to see that in this way, after projecting stereographically, we 
will obtain a subgroup of Pn , generated by a single full twist d of all strands around an 
external point and a set of n flips r; : 

d :=  (O'J0'2 ' '  · O'n- t )" , 

rl :=  O'J0'2 • . • O'n-20';_)0'n-2 • • •  0') ' 

r2 := u'{u2 • • · O'n-20';_ JO'n-2 • · · 0'2 ,  

r; :=  O'j- J  • • •  0'20';0'2 • . • O'n-20';_)0'n-2 . . • 0'; , i = 2, 3, . . .  n - 1 ,  

rn : =  O'n- JO'n-2 • • •  0'20';0'2 • • •  O'n-20'n- 1 · 

FIGURE 7 shows a full twist for the case with 3 strands while FIGURE 9 shows 
a generic flip. Straightforward calculations give the following generalization of 
Lemma 1 : 

LEMMA 1 ' .  The subgroup R C Pn, generated by r; , i = 1 ,  . . .  n, is normal in Bn . 



35 6 MATH EMATICS MAGAZI N E  

1 2  n 

Figure 9 The fl i p  r; . 

Proof. As in the proof of Lemma 1 we exhibit explicit formulas for the conjugates 
of all fl ips r; : 

cr1 r; cri
- l 

= cr1- 1 r; cr1 = r; , i - j > 1 or j - i > 0, 

- 1  - 1 cr;_ 1 r; cr; _ 1 = r; r; _ 1 r; , 
- I  cri- l r; cr;- 1 = r;- 1 , 

cr; r; cr;-
l 

= r;+ 1 , i :S n - I 
- 1  - 1  . I cr; r; cr; = r; r;+ 1 r; , z :S n - . • 

Let us denote by S the subgroup, generated by d and r; . Using purely topological in
formation, namely that n1 (S 0 (3)) � Z2 , we can deduce the following generalization 
of Proposition 1 :  

PROPOS ITION 1 ' .  Thefactorgroup S/ R is isomorphic to IZ2. 

An equivalent statement is that d2 E R .  
Given a braid with more than 3 strands i t  i s  generally not simple to determine 

whether or not it belongs to the group S, or in other words whether or not it can 
be plaited when its strands are tied together at each end, starting from the trivial braid 
and performing flips r; and twists d and their inverses (to the upper end) . It turns out 
that this  question is of importance for the construction of knitting machines and has 
been solved explicitly in [10]. The braid in FIGURE 1 0  for example can be obtained by 
a sequence of flips. Since the strands in this case stay in pairs we can think of them as 
representing ribbons . You can play around with this example by taking a paper strip, 
cutting two slits parallel to the long sides and trying to plait the shown configuration 
or you can look at Bar-Natan's  gallery of knotted objects [3] from which the example 
was borrowed. In fact the "braided theta" in FIGURE 1 0  can be obtained by perform-

Figure 1 0  " B ra ided theta ." 
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ing a sequence of ribbon flips Rh R2 , R3 and their inverses, which are similar to the 
ones in FIGURE 6 but performed on the 3 ribbons . By definition we have R; : =  r2; r2; � J  
and the effect of a flip R; i s  similar to that of the usual flip r; except that it twists the 
i th ribbon by 720° (counterclockwise) . It is easier to find experimentally, rather than 
doing the algebra, that the "braided theta" in FIGURE l O is the product R3 R2

1 R)
1 R2 • 

If one tries to generalize the main result of this paper to higher dimensions, one 
would notice immediately that the isomorphism fails .  On the one hand braids in higher 
than three-dimensional space can always be untangled. On the other hand the funda
mental groups of S 0 (n) are nontrivial .  The reason for this failure is that we are able to 
attribute a path in S 0 (3) to any spherical braid with 3 strands but this is not the case 
for n > 3 (4 points on S

3 
may not determine an orientation of the orthonormal frame 

in JR4 .) 
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If we put two non-overlapping squares (not necessarily the same size) inside a unit 
square, then the sum of their circumferences is at most 4, the circumference of the 
unit square. Apparently this problem was first posed around 1 932 by Paul Erdos as a 
problem for high school students in Hungary [3] . It was actually the simplest case of a 
more general Erdos conjecture: if we put k2 + 1 non-overlapping squares inside a unit 
square, then the total circumference remains at most 4k [ 4] . 

Apparently not much work was done on this conjecture--even the paper by Erdos 
and Graham [3] , which starts out by discussing this problem, is mostly about pack
ing identical unit squares inside a larger square. In 1 995 Erdos, calling it "perhaps 
undeservedly forgotten" [2, as quoted in [1 ] ] ,  resurrected the conjecture by offering 
$50 for a proof or disproof [ 4] . He and Soifer in [ 4] also considered the more general 
problem of packing an arbitrary number of squares inside a unit square, not just k2 + 1 
squares. They provided lower bounds for the total circumference of the squares, and 
they conjectured that their lower bounds are actually the best possible. 

I first learned of this problem from the paper by Campbell and Staton [1 ] ,  who 
independently also provided lower bounds for the total circumference. They also con
jectured that their lower bounds (identical to those of Erdos and Soifer) are the best 
possible. Naming a conjecture after four people is a bit unwieldly, so we will use ini
tials and call it the ESCS conjecture. In this note we will not prove either the original 
1 932 Erdos conjecture or the seemingly more general ESCS conjecture, but we will 
show that they are equivalent. If you can prove one of them, then the the other follows.  

The prob lem 

Instead of looking at the circumferences of the squares, we will focus on the lengths 
of their sides, clearly an unimportant change. Therefore put n squares (not necessarily 
the same size) inside a unit square, so that these squares share no common interior 
point. Let e 1 , e2 , • . .  , en denote the side-lengths of these squares.  Define f (n) to be 
the maximum possible value of :L7=1 e; . Is there a formula for f (n)?  

There i s  a slick proof i n  [1 ]  and [ 4 ]  that f (k2) = k for all k :::=: 1 :  apply the Cauchy-
Schwarz inequality to the vectors ( 1 ,  1 ,  . . .  , 1 )  and (e 1 , e2 , . . .  , ekz ) to get 

e, + e2 + . . .  + ekz ::S ( 1 2 + 1 2 + . . .  + 1 2) I f2 (ei + e� + . . .  + e;z ) l /2 ::S k,  

so f (k2) ::S k. Since the standard k x k grid reaches this upper bound, we conclude 
that f (k2) = k . 

The original Erdos conjecture is that 

3 5 8  

f(k2 + 1 )  = k for all k :::=: 1 .  
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The ESCS conjecture can be stated as follows:  

c 
t ee + 2c + 1 )  = k + k for all k > l e i .  

Here c can b e  any integer, positive or negative (or zero) . For example, the conjecture 
states that f (k2 - 1 )  = k - 1 /  k for all k > 1 .  When c = 0, the conjecture states that 
f (k2 + 1 )  = k-the original Erdos conjecture. Note that if n is an integer that is not a 
perfect square, then n lies between two squares of opposite parity, say r2 and (r + 1 ) 2 . 
Hence either n - r2 is odd or n - (r + 1 )2 is odd, so the conjecture provides values of 
f (n )  for all nonsquare integers n .  For example,  suppose n = 22. Now 22 lies between 
1 6  and 25, and in this case it is  22 - 25 = -3 that is odd. So we put k = 5 and c = -2 
i n  the formula, and the conjectured value o f  f(22) is 5 - 2/5 = 4.6 .  

By explicit construction, Erdos and Soifer (also Campbell and Staton) showed that 
f (k2 + 2c + 1 )  2:: k + cj k for all k > l e i .  Thus in order to prove the conjecture, all 
we need to do is show that k + cj k is an upper bound for f (k2 + 2c + 1 ) .  This is 
easier said than done. Instead, we will show that if the formula is correct for one 
particular value of c, then it must be correct for all values of c. In particular, the values 
conjectured by ESCS follow from the value conjectured originally by Erdos .  

An upper bound 

We first show how knowing f at one particular value of its argument can be leveraged 
into an upper bound for f at a different value. 

First put n small squares (in some configuration) inside a unit square. Let A denote 
the sum of the edge-lengths of the n squares,  i .e . ,  A = "L7=1 e; . Set aside this unit 
square for the moment. Now take another unit square and divide it into the standard 
b x b grid of squares, each with side length 1 /b .  Remove an a x a subsquare, and 
replace it with our first square, shrunk by a factor of b j a so that it fits inside the a x a 
space. FIGURE 1 illustrates this for n = 7, b = 5 ,  and a = 3 .  

n squares 
here � 

Figure 1 On the l eft is n squares packed i nto a u n it square. I n  the center is a b x b gr id  
wi th  a n  a x a s u bsquare removed . O n  the r ight we have fi l l ed the a x a space with a 
s h ru n ken vers ion of o u r  fi rst sq uare.  

We now have a configuration of b2 - a2 + n squares inside the unit square. The 
sum of the side lengths of these squares is a A jb + (b2 - a2) jb .  This is at most f (b2 -
a2 + n ) ,  so we have a A jb + (b2 - a2)jb ::::: f (b2 - a2 + n ) .  Rewriting the inequality 
gives us 

b2 b 2 2 A ::::: a - - + - f (b - a  + n ) .  
a a 
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Since our original packing of n squares i n  the unit square was arbitrary, we conclude 
that 

b2 b 2 2 f(n) :S a - - + - f (b - a  + n) . 
a a 

( 1 ) 

Thus if we know f(n + b2 - a2 ) , then we have an upper bound for f(n) .  Different 
values of a and b produce different upper bounds; we will make good use of this fact. 

The main resu l t  and proof 

It's  probably worthwhile to state our main result in a formal way. For any integer c,  
write P (c) for the statement 

c 
j (k2 + 2c + 1 )  = k + k for all k > I e i -

We will prove that the truth of P (c) for one value of c implies that P (c) i s  true for all 
values of c. In particular, if P (O) is true (the original Erdos conjecture), then all of the 
P (c) 's  are true (the ESCS conjecture). 

Naturally the proof is by induction on c ,  but in contrast to the usual case, we 
need to show not only that P (c - 1) ==> P (c) (forward induction) , but also that 
P (c + 1) ==> P (c) (backward induction) . This situation arises because c can be any 
integer, including negative integers . 

We proceed in two steps. In the first step, we derive a crude upper bound for f (k2 + 
2c + 1 ) based on equation ( 1 )  and the induction assumption. 

LEMMA 1 .  Suppose P (c - 1) is true. Then 

c k + c  
f (k2 + 2c + 1 ) ::::; k + k + 

k (k2 _ 1 )  
for all k > l e i . 

Similarly, suppose P (c + 1 )  is true. Then 

c k - c  
f (k2 + 2c + 1 ) ::::; k + k + 

k (k + 1 ) 2 for all k > l c l . 

(2) 

(3) 

Proof We first assume that P ( c - 1) is true. Suppose k > I c \ .  Put n = k2 + 2c + 1 ,  
a = k - 1 ,  b = k in equation ( 1 ) . Then 

b2 - a2 + n = 2k - 1 + k2 + 2c + 1 = (k + 1 ) 2 + (2c - 1 )  

= (k + 1 ) 2 + 2(c - 1 )  + 1 .  

Note that k + I > j c - 1 1 , s o  we can use our hypothesis that P (c - 1 )  i s  true, i .e . ,  
J (b2 - a2 + n) = k + 1 + (c - 1 ) / (k + 1)  = k + (k + c) j (k + 1) .  Thus equation ( I )  
becomes (after some straightforward algebra) 

2 k2 k ( k + c ) 
f (k + 2c + 1 )  < k - 1 - -- + -- k + --- k - 1 k - 1 k + 1 

c k + c  
= k + k + 

k (k2 - 1 )
, 

as claimed. The proof of equation (3) proceeds similarly, but we use n = k2 + 2c + 1 ,  
a = k + 1 ,  and b = k + 2 in equation ( 1 ) .  • 
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We thus now have an upper bound for f(k2 + 2c + 1) that applies for all k > l e i ,  
but i t  i s  not quite what w e  want-it i s  too big by ( k  + c) j (k (k2 - 1 ) ) .  In the second 
step, we refine the upper bound so that it matches the ESCS lower bound. 

LEMMA 2 .  Equation (2) implies P (c). Similarly, equation (3) implies P (c) . 

Proof As stated above, it is enough to show that f(k2 + 2c + 1) :s k + cj k. 
First assume equation (2) is true. In equation ( 1 )  we let n = k2 + (2c + 1) as before, 

but now let a = k and keep b arbitrary. Then b2 - a2 + n = b2 + (2c + 1 ) .  Note that 
we can apply equation (2) to f (b2 + 2c + 1 )  since b > a = k > l e i . Equation ( 1 )  then 
implies 

b2 b 
f (k2 + 2c + 1 )  :S k - k + -;; J Cb2 + (2c + 1 ) )  

b2 b ( c b + c ) 
:S 

k - k + k b + b + 
b(b2 - I )  

c b + c  
= k + k + 

k (b2 - I )  

This is true for any value of b > k .  Now let b --+ oo .  We get 

f (k2 + 2c + 1 )  :S k + cj k .  

which i s  exactly what w e  want. 
The other half of the lemma is proved similarly. Details are left to the reader. • 

Putting lemmas ( 1 )  and (2) together, we get our main theorem. 

THEOREM.  If P (c) is true for one value of c, then it is true for all values of c. 

One final note on this topic .  Looking carefully at the proof of Lemma (2), we see 
that in order to prove the ESCS conjecture, it suffices to show that f (k2 + 2c + 1 )  = 
k + cj k + E (k) , where kE (k) --+ 0 as k --+ oo. Unfortunately, in order to do this it is  
probably necessary to investigate in detail the placement of the n squares inside the 
unit square. 
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The fact that the sum of independent normal random variables is normal is a widely 
used result in probability. Two standard proofs are taught, one using convolutions and 
the other moment generating functions, but neither gives much insight into why the 
result is true. In this paper we give two additional arguments for why the sum of 
independent normal random variables should be normal. 

The convol ut ion proof 

The first standard proof consists of the computation of the convolution of two normal 
densities to find the density of the sum of the random variables. Throughout this article 
we assume that our normal random variables have mean 0 since a general normal 
random variable can be written in the form a Z + f.L ,  where Z is standard normal and 
f.L is a constant. One then finds the convolution of two normal densities to be 

The computation is messy and not very illuminating even for the case of mean zero 
random variables. 

The moment generating proof 

The calculation of convolutions of probability distributions is not easy, so proofs us
ing moment generating functions are often used. One uses the fact that the moment 
generating function of a sum of independent random variables is the product of the 
corresponding moment generating functions. Products are easier to compute than con
volutions .  

We have that the moment generating function of a mean zero normal random vari
able X with variance a2 is 

( x2 ) oo exp - 22  tza 2 
Mx (t) = 1 exp(tx) .j2ii " dx = exp (--) . 

- oo  2n a 2 
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Thus, if X 1 and X2 are independent, mean zero, normal random variables with vari
ances a1

2 and a:} , respectively, then 

We see that the product of the moment generating functions of normal random vari
ables is also the moment generating function of a normal random variable. The result 
then follows from the uniqueness theorem for moment generating functions, i .e. ,  the 
fact that the moment generating function of a random variable determines its distribu
tion uniquely. 

This argument is a little more illuminating . .  At least we can see what is happening 
in terms of the moment generating functions. Of course, the fact that the moment 
generating function of a normal random variable takes this nice form is not obvious. 
We also must use the uniqueness theorem to make the proof complete. 

The rotation proof 

The geometric proof that we now present has the advantage that it is more visual than 
computational. It is elementary, but requires a bit more sophistication than the earlier 
proofs. 

We begin with two independent standard normal random variables, Z1 and Z2 . The 
joint density function is 

!( 
) 

_ exp( - � <zi + z�) )  
Z � o  Z2 - 27r , 

which is rotation invariant (see FIGURE 1 ) .  That is, it has the same value for all points 
equidistant from the origin. Thus, f(T(z 1 • z2)) = f(z 1 , z2) ,  where T is any rotation 
of the plane about the origin. 

Figure 1 
( zhd ) 

f(ZJ , Z2 ) = exp -2� iS rotation i nvariant. 

It follows that for any set A in the plane P ((Z1 , Z2) e A) = P ((Z� o  Z2) e T A), 
where T is a rotation of the plane. Now if X 1 is normal with mean 0 and variance a[ 
and X2 is normal with mean 0 and variance a:} , then X1 + X2 has the same distribution 
as a1 Z1 + a2 Z2 . Hence 

where A is the half plane { (z 1 .  z2) I a1 z 1  + a2z2 ::: t } .  The boundary line a1 z 1  + 
a2z2 = t lies at a distance d = � from the origin. 

"I +a2 
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It follows that the set A can be rotated into the set 

TA = { (Zt , Z2) 1  Zt < 
t } . Juf + u:f 

(See FIGURE 2 for the case t > 0 and FIGURE 3 for the case t < 0.) 

__________ ,_ __ +------- Z I 

Figure 2 The half plane a1 z1 + a2 Z2 .::: t, t > 0 is rotated i nto the half plane z1 .::: 
t 

�· 

-------r--,_---------- Z 1  

Figure 3 The half plane a, z, + a2z2 .::: t, t < 0 is rotated i nto the half plane z, .::: 
t 

�· 

Thus P(Xt + X2 < t) = P(Juf + u:fZt < t) .  It follows that Xt + X2 is normal 

with mean 0 and variance uf + u:f. This completes the proof. 
In all the probability texts that we have surveyed, we have only found one [2, pp. 

361-363] with an approach based on the rotation invariance of the joint normal density. 

Genera l iz ing the rotation argu ment 

The next proposition follows from the same rotation argument used to show that 

Ut Zt + a2Z2 is equal to Juf + u:}Z in the normal case. 
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PROPOSITION.  Assume that X and Y are random variables with rotation invariant 
joint distribution and X has density fx (x) .  Let Z = aX + bY.  Then Z has density 

When X is normal, this implies that aX + bY is normal . Another example occurs 
when (X, Y) is uniformly distributed over the unit disc. Then X has density f (x) = 
� � for - 1  ::::; X ::::; 1 .  It follows that aX + bY has density fc (x) = c� J 1 - � .  
for -c ::::; x ::::; c ,  where c = Ja2 + b2 • We note in this example that X and Y are not 
independent. It is a well known result [1 ,  p. 78] that if X and Y are independent with 
rotation invariant joint density, then X and Y must be mean 0 normal random variables. 
Thus we cannot use this method to find the density of aX + bY for independent X and 
Y except in the case where X and Y are normal. 

The algebraic proof 

It is possible to give a simple, plausible algebraic argument as to why the sum of 
independent normal random variables is normal if one is allowed to assume the central 
limit theorem. The central limit theorem implies that if X 1 , X 2 , . • • are independent, 
identically distributed random variables with mean 0 and variance 1 ,  then 

and 

(XI + · · · + Xn ) P .fii ::::; t --+ P (Z1 ::::; t ) ,  

p (Xn+ I + · · ·  + X2n 
< t) --+ P (Z < t )  .fii - 2 _  ' 

where Z 1 and Z2 are independent, standard normal random variables . Furthermore, 

P (XI + · · · + X2n ) -----==---'- ::::; t --+ P (Z3 ::::; t ) ,  v'2ri 
where Z3 is also standard normal. Since 

X1 + · · · + Xn 
+ 

Xn+ l + · ·  · + X2n = 
X 1 + · · · + Xzn 

= 
-J2 X1 + · · · + Xzn 

.fii .fii .fii v'2ri ' 
it would seem reasonable that Z1 + Z2 has the same distribution as .Ji Z3 , i .e . ,  
Z1 + Z2 is normal with mean 0 and variance 2. This argument can be made rigorous 
using facts about convergence in distribution of random variables . 

A similar argument using the fact that 

would show why the sums of general independent normal random variables must be 
normal. 

This algebraic argument is a nice conceptual argument for showing why the sum of 
independent normal random variables must be normal, but it assumes the central limit 
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theorem, which i s  not obvious or easy to prove, as well as facts about convergence in 
distribution. 

The rotation proof seems better to us than the others since it is elementary, self 
contained, conceptual, uses clever geometric ideas, and requires little computation. 
Whether it would give more insight to the average student is difficult to say. Neverthe
less, with all of this in its favor, it ought to be more widely taught. 
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Proof Without Words :  I sosce l es D i ssect ions 

Every triangle can be dissected into four isosceles triangles : 

Every acute-angled triangle can be dissected into three isosceles triangles:  

A triangle can be dissected into two isosceles triangles if and only if one of its 
angles is three times another or if the triangle is right angled: 

� x 2x 
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It is a well-known theorem in introductory complex analysis that a linear fractional 
transformation (also called Mobius transformation and bilinear transformation) is a 
bijection of the extended complex plane that maps circles and lines onto circles and 
lines [1] . It is easy to verify that the complex conj ugate of a linear fractional trans
formation is also such a bijection. An interesting question is what we can say about 
an arbitrary bijection that maps circles and lines onto circles and lines. Is it necessary 
for such a map to be either a linear fractional transformation or the complex conjugate 
of a linear fractional transformation? The answer is YES . Note that such a map is not 
even assumed to be continuous .  

The converse theorem and i ts proof 

Let us first state the theorem in a formal way. We will use the symbol C to denote the 
set of extended complex numbers C U { oo } .  

THEORE M .  If f  : C ---+ C is a bijection that maps every circle or line onto a circle 
or line, then f is either a linear fractional transformation or the complex conjugate of 
a linear fractional transformation. 

Proof First we can reduce to the case where f (O) = 0, f ( 1 )  = 1 ,  f (oo) = oo. 
To see this,  suppose f (O) = w1 , f ( 1 )  = w2, f (oo) = w3 where w1 , w2 , w3  are three 
distinct complex numbers. Then there is a unique linear fractional transformation ¢ 
such that ¢ (w1 ) = 0, ¢ (w2) = 1 ,  and ¢ (w3 ) = oo [1] .  Hence ¢f is a bijection which 
satisfies ¢f (wJ )  = O, ¢f (w2) = 1 , and ¢f (w3) = oo. lf we can show that ¢f is a linear 
fractional transformation, then using the facts that linear fractional transformations 
are invertible and compositions of linear fractional transformations are again linear 
fractional transformations we can conclude that f = ¢- 1 ¢f is also a linear fractional 
transformation. 

So from now on we assume 0, 1 ,  and oo are fixed points . We want to prove that f 
is the identity map or its complex conj ugate. 

The following facts will be used frequently: 

( 1 )  Since f fixes oo, lines are mapped to lines and circles to circles. 

(2) If two lines are parallel, then they intersect at oo so their images are also parallel. 

(3) If a line is tangent to a circle, so is the image of this line to the image of the circle. 

(4) Since f fixes 0, 1 ,  and oo, the real axis maps to itself. 

It follows from (2) and (4) that horizontal lines are mapped to horizontal lines.  
We can show that vertical lines are mapped to vertical lines. First the y-axis is 

mapped onto itself. To see this ,  take the circle Co centered at � with radius �. The 
tangent lines to this circle at 0 and 1 ,  denoted by T0 , T1 , are parallel to each other so by 
(2) their images are parallel . Also by (3),  the images of T0 , T1 are tangent to the image 
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of the circle. Since 0 and 1 are fixed, C0 i s  mapped to a circle passing through 0 and 1 .  
If its center were not on the real axis,  then the tangent lines at 0 and 1 would intersect 
each other which is a contradiction. Since there is a unique circle with its center on 
the real axis and passing through 0, 1 ,  C0 is mapped onto itself. Consequently T0 is 
mapped onto itself. Consider an arbitrary vertical line, say Ta : x = a E R. Since Ta is 
parallel to To , f (Ta )  is parallel to f(To) . But f(To) is a vertical line so f(Ta )  is also a 
vertical line. 

Now we use induction to show that 

f(n) = n ,  Vn E N. 

This is true for 0 and 1 .  Suppose it is true for all n < k + 1 .  Then for n = k + 1 ,  we 
look at the circle Ck centered at k with radius 1 .  Since k is fixed by f, the vertical 
line X = k is mapped onto itself. The horizontal line y = 1 is tangent to ck at the 
point (k, 1 ) .  Consequently the image of this line, which is also horizontal, is tangent to 
f (Ck ) at f(k , 1 ) ,  which is on the line x = k. This implies f(Ck) is a circle symmetric 
about the vertical line x = k. Thus f(k + 1 )  and f(k - 1 ) , being the points of inter
section of f(Ck) with the x-axis, are symmetric about the line x = k. Since the points 
k - 1 and k are fixed, k + 1 is also fixed. Using similar arguments we can show that 

f(n) = n , Vn E Z. 

We can further prove that 

To see this,  fix n E Z and consider the circle C centered at 2n;t with radius ! · Since 
the points n - 1 and n are fixed, x = n and x = n - 1 are vertical tangents to f(C) .  
I t  follows that f (C) = C as  they must have the same center and radius. Consequently 
y = ! .  which is the horizontal tangent line to c at en;! ' ! ) ,  is mapped to itself or to 

y = - ! . This means 

(� �) = (� �) f 
2 ' 2 2 ' 2  

or (� - �) . 
2 ' 2 

In either case it follows that the vertical line through en;' ,  ! )  maps to itself so / ( 2n- l )  _ 2n- l  2 - 2 . 
Similar arguments can be used to prove that 

Vn E Z, Vk E N. 

Note that the set A = e�"i1 , n E Z, k E N} is dense in R. If there is a point a on 

the real line such that f(a) =I= a, we can find n and k such that 2�;; 1 lies between 
the points f(a) and a . Draw a circle Cn ,k with its center on the real axis and passing 
through the points 0, 2�"f1 • Then we see that this circle intersects one and only one of 
the two vertical lines, x = a  and x = f (a) .  Without loss of generality, suppose that 
Cn ,k intersects x = a  but not x = f(a) . Note that Cn ,k is mapped onto itself since both 
0 and 2�;; 1 are fixed. This means 

Cn ,k n (x = a) =I= 0 ,  
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but 

f(Cn,k ) n (x = f (a) )  = Cn ,k n (x = f(a))  = 0 .  
which i s  a contradiction. Hence the real line i s  fixed. 

Finally we consider the imaginary axis .  Look at the standard unit circle. Since - 1  
and 1 are fixed, the unit circle is mapped onto itself so the horizontal tangent at (0, 1 )  
i s  mapped to either the horizontal tangent at (0, 1 )  or the horizontal tangent at (0, - 1 ) .  
Hence either f(O, 1 )  = (0, 1 )  or f(O, 1 )  = (0, - 1 ) .  If f (O, 1 )  = (0, 1 ) ,  then 0 ,  i ,  and 
oo are fixed. Our argument showing that the real axis is fixed applies to the imaginary 
axis .  If f(O, 1 )  = (0, - 1 ) ,  then the conjugate of f,  denoted by f* ,  fixes 0, i ,  and oo .  
I t  follows that f* fixes both the real and imaginary axes.  

For an arbitrary point (a , b) in the complex plane, there are two cases depending on 
whether f fixes the imaginary axis or its conjugate f* fixes the imaginary axis .  In the 
case where f fixes the imaginary axis,  the vertical line x = a and the horizontal line 
y = b are both mapped to themselves so their intersection is fixed, that is f(a ,  b) = 
(a ,  b) . Since (a , b) is an arbitrary point, it follows that f is the identity. In the case 
where f* fixes the imaginary axis,  a similar argument shows that f* is the identity. 
Therefore f is the conjugate of the identity. • 

Conc l usion 

Motivated by the theorem that a linear fractional transformation is a bijection that maps 
circles and lines onto circles and lines, we proposed and proved a converse theorem 
which states that any bijective (not necessarily continuous) function f : C --+  C that 
maps every circle or line onto a circle or line is either a linear fractional transformation 
or the complex conjugate of a linear fractional transformation. 
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Limits of subsequences play a small supporting role in analysis. (See, for example, 
the Bolzano-Weierstrass Theorem.) However, in the typical undergraduate course we 
never seem to care what the limits actually are, suggesting that these "sublimits" might 
not deserve star billing. The article [3] by Zheng and Cheng in the references does 
consider such "sublimits" in a particular setting. This article takes a closer look at 
subsequences and their limits more generally. I owe a disclosure to those readers who 
connected the "sublimital" of the title with the word "subliminal ." While "sublimits" 
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may well b e  hidden i n  the original sequence, they aren't  placed there to send sub
conscious messages. Instead we should think of them as enticements to mathematical 
exploration. 

EXAMPLE 1 .  Let (bn )  be the alternating sequence given by bn = ( - l )n ( n� l ) .  The 

fi & 0 I -2 3 -4 Th" di b . h b rst 1ew terms are 1 ,  2 ,  3 ,  4 ,  5 ,  . . . . 1s sequence verges, ut 1t as su sequences 
converging to two "sublirnits": 

. b l "  
2k - 1 

hm 2k = 1m --- = 1 and 
k�oo k--> oo 2k 

. . - (2k - 2) 
hm b2k- I = hm = - 1 .  k-->00 k-->00 2k - 1 

DEFINITION.  Given a sequence (an ) of real numbers, a real number s is a sublimit 
of (an ) if and only if there is some subsequence (ank ) of the original sequence such 
that limt--.oo ank = s .  Denote the set of all sublimits of a sequence (an )  by S(an ) .  

EXAMPLE 1 (CONTINUED ) .  For the sequence (bn ) ,  where bn = (- l )n ( n- I ) as n 
given earlier, S(bn ) = { 1 ,  - 1 } .  The reader is invited to show (bn ) has no other sub-
limits . 

Remark. If a sequence (en )  converges to a limit / ,  then S(cn ) = { I }  since I is the 
only possible sublimit. 

EXAMPLE 2 .  The sequence (dn ) given by dn = n has no sublirnits and S(dn ) = 0 .  

EXAMPLE 3 .  The set Q o f  rationals is countable s o  there is a sequence (qn ) listing 
all of Q. Then every real number r is a sublimit of (qn ) .  To see this,  note that for each 
e = t > 0 there are infinitely many rationals in the open interval (r - e, r + e) . So 

for all k E N, we can choose qnk E Q such that \ qnk - r \  < t and nk < nk+ l · Thus the 
subsequence (qnk )  converges to r and S (qn ) = JR. 

In Example 3 each real number has its own subsequence, which the usual notation 
(qnk ) can ' t  indicate. The following notation overcomes that lack and will be useful in 
the proof of Theorem 1 .  

DEFINITION.  Given a sequence (an ) and a set of its subsequences indexed by K ,  
for k E K let (an (k) ) denote the subsequence with index k and let an (k , i )  denote the 
i th term of (an (k) ) .  

Example 3 naturally leads to the question "Given any set S of real numbers i s  there 
a sequence whose set of sub limits is S?" The answer, in a word, is "no." Our goal is to 
characterize the possible sets of sublirnits. At the end we'll generalize this question to 
metric spaces. 

In looking for ways to describe possible sets of sublimits we might well start with 
instances where subsequences appear in analysis courses. (See, for example, the text 
[1] by Abbott for definitions of terms used in this paragraph along with more on the 
theorems.)  The Bolzano-Weierstrass theorem states that every bounded sequence has 
a convergent subsequence. So perhaps bounded sets play a role. However, the set of 
sublimits in Example 3 is definitely not bounded, so that property can ' t  be part of 
the characterization of sets of sublirnits. Another common role of subsequences is in 
the definition of sequentially compact. The Reine-Borel theorem informs us that sets 
are compact if and only if they are closed and bounded. Also, limits and sublimits 
are related to limit points, which appear in the definition of closed sets . So perhaps 
the characterization of sets of sublimits relates to closed sets. The sets of sublimits in 
Examples 1 ,  2 and 3 are, indeed, closed. Theorem 1 below confirms that all sets of 
sublimits are closed. 
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THEOREM 1 .  Let (an )  be any sequence of real numbers. Then S (an ) , its set of 

sublimits, is a closed set. 

FIGURE 1 explains the idea behind the proof. The right hand column is a sequence 
(sd of sublimits of the sequence (an )  and its limit L .  Each of the sublimits sk has a 
subsequence (an (k) ) converging to sk . We need to create a new subsequence (an (L))  
converging to  L .  FIGURE 1 suggests choosing the "diagonal" subsequence (an (k, k) ) .  
The reader i s  invited to construct an example where such a diagonal subsequence fails 
to converge to L. In the proof we shall generate a more sophisticated subsequence 
using the Axiom of Choice. 

an ( 1 ,  1 )  an ( l ,  2) an ( l ,  3) S J  
an (2, 1 )  an (2, 2) an (2, 3) Sz 
an (3 ,  1 )  an (3 ,  2) an (3 , 3) S3 

an (k ,  1 )  an (k , 2) an (k, k) Sk 

L 

Figure 1 

Proof of Theorem 1. Let (an )  be any sequence and, in order to show S (an )  is closed, 
let L be any limit point of S(an ) .  Then there is a sequence (sk ) such that for each 
k E N, sk E S(an ) ,  sk i= L and limk-Hx> sk = L. Because each sk is a sublimit of (an ) ,  
there i s  a subsequence (an (k) ) such that lim;.....00 an (k , i )  = sk . (See FIGURE 1 . ) We 
need to build a new subsequence (an (L)) converging to L in order to show S(an ) is 
closed. 

For i E N, let j ( i )  be the smallest subscript such that for l sj (i) - L l  < f and let 

an (j (i ) ,  h (i ) )  be the first term of (an )  such that l an (j (i ) ,  h (i ) ) - Sj (i) l < f .  That is ,  
we choose the sublimit Sj (i) to be close to our ultimate limit L and in turn choose the 
term an (j (i ) ,  h (i ) )  to be close to Sj (i) · Thus an (j (i ) ,  h (i ) )  must be fairly close to L .  
More precisely, l an (j (i ) ,  h (i ) ) - L l  < f .  Note that without uniform convergence of 
the subsequences (an (k)) we need the Axiom of Choice to ensure the existence of all 
of the h (i ) .  

We are now ready to define our subsequence (an (L)) recursively. We take 
an (L , 1 )  = (an (j ( l ) ,  h ( l ) ) .  Given an (L , w) , define an (L , w + 1 )  to be the first 
term an (j (i ) ,  h ( i ) )  such that i 2: ( w + 1 )  and an (j (i ) ,  h (i ) )  has a larger index 
in the original sequence (an ) than an (L , w) has. Since there are infinitely many 
terms an (j (i ) ,  h (i ) ) ,  there are terms satisfying these conditions. Then we have 
l an (L , w) - L l < � and the subsequence an (L , w) converges to L .  Hence L is a 
sublimit of (an ) and S(an ) is closed. • 

Now that we know the set of sublimits is closed, we turn the situation around and 
show in Theorem 2 that every closed set of reals is a set of sub limits . The proof of The
orem 2 is more involved than the first proof since it requires constructing a sequence 
to fit a given closed set and ensuring that no extraneous sublimits sneak in. 

THEOREM 2. For any closed subset F of � there is a sequence (an ) such that 
S(an ) = F. 

Proof We may assume that the closed set F is non-empty since otherwise we could 
use the sequence of Example 2. To simplify notation, we further assume 0 E F. (If 
0 <J; F but a E F, we adapt the following construction by adding a throughout.) 
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To approximate every element of F w e  first define a collection of intervals I; , j ,  
where i E N U { 0 }  and 1 ::::; j ::::; 2 · 4; . (See FIGURE 2 . )  Define l; , j  = [ -2; + (j -
1 ) (2-i ) , -2; + (j ) (2-i ) ]  for i ::: 0 and 1 ::::; j ::::; 2 · 4; . Note that U��;1 I; , j  = [ -2; , 2; ] .  
Thus each time i increases, the family o f  intervals { I; , j  : 1 ::::; j ::::; 2 · 4; } covers an 
interval twice as long with intervals half as long. 

-4 -3 -2 - 1  

I I 

0 

lo, I lo,z 

I I I 

2 

I I 

----1r---t-t-t-+-+-l-1-l-l-1-l-l-1-l-l-1-l-+--l-1-l-l-t-t--• • •  

Figure 2 The i n terva l s  lij . 

For each interval I; , j  we choose a number a; , j ,  which may or may not be in the 
interval .  If F n I; , j  is non-empty, we let a; ,j be the midpoint of l; , j . Otherwise, a; , j  = 0. 
(FIGURE 3 illustrates the numbers a; , j  for a specific set F and the intervals I; , j . )  We use 
the lexicographic order on the numbers a;,j to obtain a sequence. That is, a; , j  comes 
before an ,k if and only if i < n or (i = n and j < k). [The sequence starts off a0, 1 ,  a0, 2 ,  
a u ,  a 1 , 2 ,  a 1 , 3 , . . .  , a 1 , 8 ,  az, J .  etc . ]  Let bn b e  the nth term o f  the a; , j  using this ordering. 

Set F: • • • • • •  

• • 
ao, I ao,z 

• • • • • 

a 1 ,4 a l ,3 a l ,5 a l ,6 a 1 ,1 
a 1 ,8 

Figure 3 A given c losed set F and i ts correspon d i ng terms aij .  The seq uence starts out 

- i' i .  - 1 t ' - 1 t' 0 , - t' t' t ' 1 t' 0 , . ' . 

Claim. F is the set of sublimits of (bn ) .  First we show that if x E F ,  then x E S (bn ) ,  
and then w e  show the converse. Let x E F .  There i s  n E N such that lx  I ::::; 2n

. For 
i ::=: n ,  there is one (or possibly two) choices of j such that x E I; , j .  For these i and j , 
we see that l x  - a; , j  I ::::; 2-i - I because a; , j  is the midpoint of an interval of length 2-i . 
Thus we can form a subsequence (bn (x))  from these a; ,j and (bn (x))  converges to x .  
So x i s  a sublimit of (bn ) .  

Suppose y � F .  Since F i s  closed, there i s  E > 0 such that the interval (y - E ,  
y + E) i s  disjoint from F. However, that doesn't  mean that each a;, j  must b e  at least 
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E away from y .  If there is w E I; , j n F, then a; , j , the midpoint of l; , j . satisfies l w 
a; , j I ::: 2-i - t . Since E > 0, there is n E N  such that 2-n 

< E .  Hence for i :=: n and any 
j ,  the closest a; , j could be to y is I Y - a; , j l 2: I Y - w l - l w - a; , j / 2: 2-n- I .  Thus no 
subsequence of (bn )  can converge to y and S(bn ) = F, as claimed. • 

The proof of Theorem 1 generalizes readily to any metric space. The proof of The
orem 2 generalizes to !Rn by replacing the intervals I; , j with n-dimensional "boxes." 
However, Example 4 below shows that there are metric spaces for which Theorem 2 
fails .  

EXAMPLE 4. Let IF be the set of all real functions f : lR --+ [0, 1 ] and define a 
metric d on IF by d(J, g) = sup l f (x) - g (x) / .  The whole space is closed, as is any 
metric space. However, we will show that no sequence of functions has the whole 
space as its set of sublimits. Let (fn )  be any sequence in IF. Consider the new function 
f : lR --+  [0, 1 ] defined by 

J (x)  = {�n (n) + 0.5 
fn (n) - 0.5 

if X ¢. N 
if x = n and fn (n) :S 0.5 
if x = n and fn (n ) > 0.5 

Then d(J, fn )  2: l f (n ) - fn (n) l = 0.5 .  Thus no subsequence of  <Jn )  can approach the 
function f .  The reader is invited to determine some of the many other closed subsets 
of IF that are not sets of sub limits. 

The key to generalizing Theorem 2 successfully is the existence of a subset like the 
midpoints of the intervals l;, j , which is a countable, dense subset of JR. A subset S 
of a metric space X is dense in X if and only if the closure of S is X .  Equivalently, 
S is dense in X if and only if for every x E X there is a sequence of elements of S 
converging to x .  For a sequence to have the whole space as its set of limit points, 
the sequence as a set must be dense in the space. Since sequences have countably 
many terms, only spaces with countable dense subsets can be candidates to generalize 
Theorem 2. Theorem 3 below assures us they do. The reader is encouraged to prove 
Theorem 3 assuming the following fact, proven in Kuratowski [2, p. 1 56] : If a metric 
space has a countable dense subset, then every subset of it does too. The reader should 
also consider why we need to require F '# 0 in this theorem. 

THEOREM 3 .  If a metric space X has a countable dense subset and F is a non
empty closed set in X, then there is a sequence (an )  whose set S (an )  of sublimits is 
F. 

The close connection of sublimits with the deeper idea of closed sets helps explain 
why sublimits have not been studied more extensively for their own sake. 
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Proof Without Words :  Exponentia l  I nequa l i ties 

y 

A 

y 

, ' 

A 

A±.!! eB - eA eA + eB 
A < B => e---r- < < ---

B - A  2 

A + B  
2 

A + B 

2 

I I y = y  = e  

( eA + e8 ) B 
ln --

2 

y = e ' 

B 

First semester calculus: 

m(� )< m (� )< m (� )  

Second semester calculus: 

A+B B eA + eB e 2 (B -A)< J  e'dt < -- (B - A) 
A 2 
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PROPOSALS 
To b e  considered for publication, solutions should b e  received by May 1,  2009. 
1806. Proposed by Michael Becker, University of South Carolina at Sumter, Sumter, 
sc. 
The intersection of the ellipsoid x2 + y2 + � = 1 and the plane x + y + cz = 0 is an c 
ellipse. For c > 1 ,  find the value of c for which the area of the ellipse is maximal . 

1807. Proposed by Lenny Jones, Shippensburg University, Shippensburg, PA. 

Let P be a polynomial with integer coefficients and let s be an integer such that for 
some positive integer n ,  sn+ l  P (s )n is a positive zero of P . Prove that P (2) = 0. 

1808. Proposed by Paul Bracken, University of Texas, Edinburg, TX. 

Let a and fJ be positive real numbers with afJ = rr ,  and let y be a real number. Prove 
that 

1 00 1 00 1 2 + L e-ak cos (ayk) = ; .L 1 + ( + 2{J ' ) 2
. 

k= l ] =-00 
y J 

1809. Proposed by Cosmin Pohoata, Tudor Vianu National College of Informatics, 
Bucharest, Romania. 

Let M be a point on the circumcircle of triangle ABC and lying on the arc B C  that 
does not contain A. Let I be the in center of ABC, and let E and F be the feet of the 
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undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any bibliographical 

information that will assist the editors and referees. A problem submitted as a Quickie should have an unexpected, 

succinct solution. 

Solutions should be written in a style appropriate for this MAGAZINE.  Each solution should begin on a 

separate sheet. 

Solutions and new proposals should be mailed to Elgin Johnston, Problems Editor, Department of 

Mathematics, Iowa State University, Ames lA 500 1 1 ,  or mailed electronically (ideally as a �EX file) to 
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perpendiculars from I to lines M B and M C, respectively. Prove that the value of 

I E + I F 
AM 

is independent o f  the position o f  M. 

1810. Proposed by Greg Oman, Otterbein College, Westerville, OH. 

Let R be a ring. For elements x ,  y E R we say x divides y on the right if and only 
if there is a z E R with xz = y . (We denote this by x l r y .) An element p E R is a 
right prime if and only if whenever P l rxy,  then either P l rx or P l r y .  Prove that if every 
element of R is right prime, then R is a division ring, that is,  the nonzero elements of 
R form a group under multiplication. (Note : R is not assumed to be commutative nor 
is it assumed that R has a multiplicative identity. ) 

Q u i ck i es 
Answers to the Quickies are on page 38 1 .  
Q985. Proposed by Ovidiu Furdui, Campia-Turzii, Cluj, Romania. 

Let x be a real number. Evaluate the sum 
oo ( x x2 . xn ) L: n2 ex - 1 - - - - - · · · - - 0 

n= i  1 !  2 !  n !  

Q986. Proposed by Peter Ross, Santa Clara University, Santa Clara, CA. 

Prove that in a given ellipse, there exist infinitely many inscribed triangles of maximal 
area. 

So l ut ions  
Growth of In - 1 
1781. Proposed by Paul Bracken, University of Texas, Edinburg, TX. 
Let y be Euler's constant and for positive integer n define 

n 1 
Yn = L - - log n 

k= i  k 
and an = 2n (yn - y ) .  

December 2007 

Prove that the sequence {an } is monotonically increasing and bounded above. In addi
tion, determine limn-+oo an 0 

Solution by Angel Plaza, University of Las Palmas de Gran Canaria, Las Palmas G. C. ,  
Spain. 

1 
For n � 1 ,  define the sequence {.Bn } by .Bn = Yn - y -

ln
. Then, 2n.Bn = an - 1 .  For 

n � 1 ,  we have 

.Bn+ i - .Bn = -
1
- - log 

(
1 + _!_) + --

1
--

n + 1 n 2n (n + 1 )  

1 ( 1 ) 1 
= - - log 1 + - - = f(n) ,  

n n 2n (n + 1 )  
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where 

1 ( 1 ) 1 
f (x)  = - - log 1 + - - , for x > 0. 

x x 2x (x + 1 )  

Considering the derivative of f we find 

, 1 1 2x + 1  
f (x) = -- + + -:--::---=-

x2 x (x + 1 )  2x2 (x + 1 )2 

- 1 

Since f' (x) < 0, it follows that f (x) is decreasing for x > 0, and consequently, 
f(n + 1 )  S f (n)  for n 2: 1 .  Because f(x)  � 0 as x � oo, we have f (n)  2: 0 for 
n 2: 1 .  Therefore, f3n+ i 2: f3n for n 2: 1 .  Thus f3n is a nondecreasing sequence and it 
follows that an is also nondecreasing. 

Next note that 

Hence, by integration, 

I 1 
f (x) "' - 2x4

, x � oo .  

1 
f (x)  "' 6x3 , x � oo , 

so f3n+ i - f3n "' 6!3 • Because f3n � 0 when n � oo, it follows by summation that 

1 
-fJn "' 1 2n2 • 

Therefore, nfJn � 0 and consequently, an � 1 .  In addition, we have shown that 
n (an - 1 )  = 2n2f3n � - i ·  
Note. Some readers pointed out that the estimate 

1 1 En 
Yn - y = 

2n
-

1 2n2 + 
1 20n4 ' 

where 0 < En < 1 ,  appears on page 264 of the second edition of Concrete Mathemat
ics, by Ronald Graham, Donald Knuth, and Oren Patashnik. 

Also solved by Michael S. Becker; Khristo Boyadzhiev, John Christopher; Thomas Dence, G.R.A.20 Problem 
Solving Group (Italy), Kee-Wai Lau (China), Edward Omey (Belgium), Paolo Perfetti (Italy), Jenry Ricardo, 
Edward Schmeichel, Albert Stadler (Switzerland), David Stone and John Hawkins, Marian Tetiva (Romania), 
Michael Vowe (Switzerland), Michael Woltermann, and the proposer. There was one incorrect submission. 

Determining a length December 2007 

1782. Proposed by Stephen J. Herschkorn, Highland Park, NJ. 

Lines AB and AC are perpendicular, D lies on B C ,  and E and F lie on A C .  In 
addition, AD and DF are perpendicular, A B  = AD = 1 ,  and A E  = DE = x .  Find 
C F .  

Solution by Northwestern University Math Problem Solving Group, Northwestern Uni
versity, Evanston, IL. 
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Because triangles A B C  and A F  D are right and triangle B A D  i s  isosceles, we have 

LFDC = I - LADE = I - LABD = L F C D .  

Thus triangle D F C i s  also isosceles with C F = D F. Because LA D  F i s  right, the 
circle of center E and radius x must pass through F. Hence E F = x .  

Now from right triangle A D  F w e  have 

CF = DF = 2x sin(LDAE) = 2x)l - cos2 (LDAE) = )4x2 - 1 . 

Also solved by Alma College Problem Solving Group. Armstrong Problem Solvers. Herb Bailey. Fidel Barrera
Cruz, Michel Bataille (France), ]any C. Binz (Switzerland). Cal Poly Pomona Problem Solving Group. Robert 
Calcaterra. Minh Can. Michael J. Caufield, John Christopher, Chip Curtis, Ragnar Dyovik (Norway), Phil Em
bree, Fejenthalaltuka Szeged Problem Solving Group (Hungary), Marty Getz and Dixon Jones, Michelle Ghrist, 
Jeff Groah, Bayron Gatierrez, G.R.A.20 Problem Solving Group (Italy), Brian Hogan, Matthew Hudelson, J&P 
Group Math Factor, Victor Y. Kutsenok, Math 130 Students at Mary 's College of California, Peter Niiesch 
(Switzerland), Samih Obaid, J. Oelschlager, Samuel Otten, Angel Plaza (Spain), Kevin Roper, Edward Schme
ichel, Seton Hall University Problem Solving Group, Nicholas C. Singer, Skidmore College Problem Group, Ryan 
Spitler, Albert Stadler (Switzerland), Gail T. Stafford, David Stone and John Hawkins, Awa Traore, Michael Vowe 
(Switzerland), Stuart V. Witt, Michael Woltermann, Bill Yankosky, Ken Yanosko, Hongbiao Zeng, Chris Zin, and 
the proposer. There was one solution with no name and five incorrect submissions. 

An inequality of reciprocals December 2007 

1783. Proposed by Ovidiu Bagasar, Babes Bolyai University, Cluj Napoca, Romania. 

Let n be a positive integer and let x 1 , x2 , • • •  , Xn be positive real numbers . Let S = 
x? + x� + · · · + x� and P = x1 x2 · • · Xn · Prove that 

n 1 1 I: < - . 
k= l S - a;: + p - p 

Solution by Harris Kwong, SUNY at Fredonia, Fredonia, NY. 
By the AM-GM inequality 

S - xk + P 
n 

and hence 

= � (P +  � x�) > (P Q x;Y 1n 

i¥k i# 

1 1 Xk 

P ::/P  

----- < 
S - x;: + P ;:; p ::(P · 
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By another application of the AM-GM inequality, 

"" < -- - "" Xk < -- · � = - . 
n 1 1 ( 1 n ) 1 1 

f;{ S - x;: + P - P ifF n f;{ - P ifF P 

We note that equality holds if and only if x1 = x2 = · · · = Xn · 
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Also solved by Michel Bataille (France), Minh Can, Nonhwestem University Math Problem Solving Group, 
Paolo Perfetti (Italy), Henry Ricardo, Albert Stadler (Switzerland), Marian Tetiva (Romania), Bob Tomper, and 
the proposer. 

Integral to series December 2007 

1784. Proposed by Ovidiu Furdui, Western Michigan University, Kalamazoo, MI. 

Let a > 0 and let p be a positive integer. Prove that 

oo n- 1  1 1 L a 
= e o xp- 1+ae-x" dx . 

n= 1  (a + p) (2a + p) . . .  (na + p )  

Solution by Michel Bataille, Rauen, France. 
Using the substitution x = ( 1  - t ) 1 fa in the integral, we obtain 

1 1 1 1 1 1 1 1 ( 00 tn ) 
e xp- l+ae-x" dx = - e1 ( 1 - t )pfa dt = - L(l - t )pfa · I dt 

0 a 0 a 0 n=O n .  

Let ,8 denote the beta function, defined by ,8 (x , y )  = J0
1 tx- 1  ( 1 - t )Y- 1 d t  for x ,  y > 0. 

It is well-known that for any nonnegative integer m, we have 

m !  
,B (m + 1 , y )  = . 

y (y + 1 )  · · · · · (y + m) 

Because the series in (*) converges uniformly on  [0, 1 ] ,  the sum and the integral can 
be interchanged and it follows that 

1 1 " 1 oo 

1 1 tn 1 oo 1 p 
e xP- 1+ae-x dx = - L ( 1 - t ) Pfa · I dt = - L 1 ,8 ( n + 1 ,  - + 1) 

0 a n=O 0 n . a n=O n " a 

1 00 1 
= � L ( E. + 1 )  . . . . . ( E. + 1 + n) n=O a a 

oo n- 1  
= � (a + p) (2a : p) · · · (na + p) · 

Also solved by Armstrong Problem Solvers, Paul Bracken, Brian Bradie, Chip Curtis, Costas Efthimiou, Joiio 
Guerreiro (Portugal), Eugene A. Herman, Kim Mcinturff, J. Oelschlager, Paolo Perfetti (Italy), Roben W Pratt, 
Kevin Roper, Nicholas C. Singer, Dmitri V. Skjorshammer, Albert Stadler (Switzerland), Marian Tetiva (Romania), 
Bob Tomper, Michael Vowe (Switzerland), and the proposer. 

Summing floor powers December 2007 

1785. Proposed by Mihaly Bencze, Brasou, Romania. 

Let k be a positive integer, let x a real number, and let {x } denote the fractional part of 
x. Prove that 



3 80 MATHEMATICS MAGAZI N E  n l · 1 J k 
a. � x + 1 :  = n Lxl + (C LxJ + ll - LxJ k )  Ln {x }j . 

b. t lx + 
21 - 1 J k 

= n Lxl + (C LxJ + I )k - LxJ k )  ln {x }  + �J . 
j= J 2n 2 

Solution by Marty Getz and Dixon Jones, University of Alaska Fairbanks, Fairbanks, 
AK. 
We prove that for real r 2: I ,  

rJ - r -n l · I J k l I J f; x + ----;:;;--- = n Lxl + (C LxJ + I )k - Lxl) n {x }  + -
r
- . 

For r = 1 ,  the sum calls for the floors of the n numbers 

1 2 n - 1 
x , x + - , x + - , . . .  , x + -- . 

n n n 

We will count the number m of these values that occur in the interval [ LxJ + 1 ,  x + 1 ] .  
This will give n l · l j k L x + � = (n - m) LxJ k + m ( LxJ + I )k 

j= J n 

To calculate m,  we multiply each of the numbers in question by n then seek the 
m numbers of the list nx , nx + l ,  nx + 2, . . .  , nx + (n - 1 )  that are in the interval 
[ n L x j + n ,  nx + n ] .  The length of this interval is n { x } .  By counting leftward from 
nx + n ,  we see that m = Ln {x }j .  

For r 2: 1 ,  the number of points from the list 

r - 1 2r - 1 3r - I nr - 1 
x + -- , x + -- , x + -- , . . .  , x + --

rn rn rn rn 

that are in the interval [ Lx j + 1 ,  x + 1] may be counted by a similar method: it is the 
number m of points from the list 

r - 1 r - 1  r - 1 r - I 
nx + -- , nx + -- + l ,  nx + -- + 2 , . . .  , nx + -- + (n - 1 )  

r r r r 

in the interval [n Lx j + n ,  nx + n ] .  Noting that the list is simply a rightward translation 
through distance r� 1 of the list for the case r = 1 ,  we find 

l r - 1 J m = n {x }  + -
r

- , 

and the result follows. 

Also solved by Michel Bataille (France). ]any C. Binz (Switzerland). Brian Bradie. John Christopher, Chip 
Curtis. Dmitry Fleischman. Hyun Soo Park (Korea). Robert W. Pratt. Albert Stadler (Switzerland). Stuart V. Witt. 
and the proposer. 
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Answers 
Solutions to the Quickies from page 376. 
A985. Let S(x)  be the sum of the series. Then, by differentiation, 

oo ( X X2 Xn- 1 ) oo Xn 
S' (x) = :L:>2 ex - 1 - - - - - · · · - = S(x) + I>2-n=l 1 !  2! (n - 1 ) !  n= l n !  

3 8 1  

00 xn 00 xn 00 xn 
= S(x)  + L (n - 1 ) ! 

(n - 1 + 1) = S(x)  + L (n - 2) ! 
+ L (n - 1 ) ! n= l n=2 n= l 

It follows that S' (x)  = S (x) + x2ex + xex , and hence 

where C is a constant of integration. Because S(O) = 0, we have C = 0 and 

A986. We first solve the problem for a circle. For a circle, the inscribed triangles of 
maximal area are equilateral triangles. To prove this,  consider a chord C of the circle. 
The inscribed triangle of maximal area with C as a side is isosceles, because such a 
triangle maximizes the altitude for base C .  In addition, given a point p on the circle 
there is a unique equilateral triangle with p as a vertex. 

The linear transformation T (x ,  y) = (ax , by) ,  a ,  b > 0 maps the unit circle to an 
ellipse with semi-axes a and b and has constant, nonzero Jacobian ab. Thus, for any 
point P on the ellipse, the image under T of the inscribed equilateral triangle with 
vertex p = y - I (P )  will be an inscribed triangle of maximal area. In particular, there 
are infinitely many such triangles and, if a =!= b, they are from infinitely many different 
congruence classes. 

Because invertible linear transformations take parallel lines to parallel lines, a sim
ilar argument shows that in a given ellipse there are infinitely many inscribed parallel
ograms of maximal area, and given any point p on the ellipse, there is a unique such 
parallelogram with vertex p .  

Editor 's Note. I n  the December 2007 issue, Albert Stadler o f  Switzerland should have 
been listed among the solvers of problem 1 756. In the October 2008 issue, Michel 
Bataille of France should have been listed among the solvers of problems 1 776, 1 777, 
1 778, and 1 779. 



R E V I E W S  

PAU L  J .  CAM P B E L L, Editor 
Beloit  Col l ege 

Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles and books are selected for this 

section to call attention to interesting mathematical exposition that occurs outside the main

stream of mathematics literature. Readers are invited to suggest items for review to the editors. 

Defense Sciences Office, Broad Agency Announcement: DARPA Mathematical Challenges, 

DARPA-BAA 08-65 September 26, 2008, https : I lwww . fbo . gov I downloadl9bcl 

9bce380aafb19f9ad3bda188bf c 1 ab20IDARPA- BAA-08-65 . doc .  

The Defense Advanced Research Projects Agency (DARPA) is soliciting research proposals "with 

the goal of dramatically revolutionizing mathematics and thereby strengthening scientific and tech
nological capabilities." Parallel to Hilbert in 1 900, it identifies 23 "mathematical challenges," each 

described in only a pair of lines or so. Yes, the Riemann Hypothesis is there (# 1 9), but more rep

resentative of the generality is # 1 5 :  "The Geometry of Genomic Space: What notion of distance is 

needed to incorporate biological utility?" The deadline for proposal abstracts is 25 July 2009, but 

the level(s) of funding and project duration are unspecified. The second criterion after "scientific and 

technical merit" is "long term value to defense," which certainly must be taken in a very wide sense 

to embrace many of the challenges listed. 

Hansell ,  Saul, How Wall Street lied to its computers, http : I lbi t s . blogs . nyt ime s . coml2008l 

09l 18lhow-wall - street s - quant s - l i ed- to- their- computers l .  

Chu-Carroll, Mark C . ,  Bad probability and economic disaster; o r  how ignoring Bayes theorem 

caused the mess, http : I l s c i enceblogs . comlgoodmathi2008I09Ibad_probabili ty _and_ 

economic_d . php. 

Rickards, James G.,  A mountain, overlooked, Washington Post (2 October 2008) A23, http : I lwww . 

washingtonpo st . com/wp- dyn/content/art icle /2008/ 10/01 /AR2008 100 101 149 . html . 

Ellenberg, Jordan, We're down $700 billion. Let's  go double or nothing ! ,  Slate (2 October 2008) 

http : / /www . slat e . com/idl220 1428/. 

Did mathematics cause the economic crisis? Mathematics can guide any kind of optimization, and 

in recent years Wall Street has hired (with handsome salaries) some of our best students to do com
puter modeling and "financial engineering." Hansell states that the models underestimated risk but 

only because bankers fed them overoptimistic assumptions.  Chu-Carroll says that "they cheated in 

the math," meaning that the probabilities of loss, default, and disaster were calculated on the false 

assumption that loan failures are stochastically independent. Rickards echoes that but also suggests 

mathematical chaos arising out of complexity. He asserts that the predominant "value at risk" (VaR) 

model, which assesses overall risk by aggregating over numerous tiny risks, is completely "the wrong 

paradigm" and that there is no hope that Wall Street and its regulators can avert catastrophes until 
they abandon it. Mathematician Ellenberg likens financial derivatives to martingales and notes that 
"unless some real pain for the martingalers is built in, we'd better be ready for a return to maver
ick finance down the road." A respondent to Chu-Carroll 's blog suggests that bankers "ignore[d] 
the math and picked the option they wanted without concern for risk or future events unrelated to 
them." Well, our schools and culture teach much less about pursuing the common good (that is left to 

the churches) than "the American dream" of unlimited economic opportunity. For some, that dream 
becomes avarice, the "immoderate desire for wealth." As a tool, mathematics is not in a position to 
object to the purposes to which it is put. Objection to greed-and the perversion of mathematics to 
that end-needs to come from the churches, the schools, and the culture, including mathematicians. 
We need to provide guidance to students about worthy enterprises for their skills. 

3 82 
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Guzdial, Mark, The big ideas of computer science, Part 1 and Part 2 (9 September 2008), 

http : //www . amazon . com/gp/blog/post/PLNK 1KCVVK85JUI3H, /PLNK2UHDL465MED27; 

383  

Programming i s  central to computer science (25 September 2008), /PLNK39 16UJMECC77L; 

Programming is central to computer science, and we can change programming (2 October 2008), 

/PLNK 1VTB7QIX9 1BSE. 

Computer science unplugged: Teach computer science without a computer ! ,  
http : // c sunplugged . org/ . 

What is important in learning computer science? What are the most significant concepts and ac
tivities? Alan Pedis's list in 1961 will remind mathematicians of important ingredients in a math

ematical education, too: parametrization, iteration, recursion, definitions, attention to eventualities 

regardless of likelihood, representation, language, simulation, and proof. Additions by author Guz

dial are more equipment-oriented: sequential instructions, coding time to exit, memory, layering, 
methods to invoke instructions, protocols and standards, and flawed humans. An evergreen ques
tion in computer science education-whether programming is central, whether one can learn much 
about computer science without programming-is the subject of his latter two blogs. " 'Breadth-first' 

computer science (teaching about all of CS, without programming) has virtually disappeared in com
puter science programs. Students found it boring, irrelevant, and lacking the feedback . . . .  We need 
to distinguish programming from the task of being a programmer. We do need people to be program

mers, but that's not an attractive job for many . . . .  The difference between programming and being 
a programmer is the same as between writing and being a novelist. Everyone should know how to 

write." 

Gowers, Timothy, June Barrow-Green, and Imre Leader (eds . ) ,  The Princeton Companion to Math

ematics, Princeton University Press, 2008; xx+1034 pp, $99. ISBN 978-0-691-11880-2. 

I am a priori skeptical of mathematical dictionaries, compendia, encyclopediae, handbooks, "com
panions," and the like.  I have several but refer to them rarely and usually without being satisfied. 

They often seem intended for libraries, which feel obliged to have some reference work on mathemat

ics. Moreover, there are numerous Web sites, including Wolfram Math World (http : I /math world . 

wolfram . com) . The preface of this book addresses that competition by stressing the book's long 
essays and carefully ordered sequence. As a "companion," the book focuses on "modem, pure math
ematics" ; does not attempt to be encyclopedic; is organized thematically rather than alphabetically; 

and has a relatively low ratio of symbols to prose. Its 200 contributors include dozens of names that 
you would recognize. The level of difficulty is not uniform, but "the editors have tried very hard not 

to allow any material into the book that they do not themselves understand, which has turned out 
to be a very serious constraint." Apart from an introduction, the book has sections on the origins 

of modem mathematics, mathematical concepts, branches of mathematics (one-third of the book), 
theorems and problems, mathematicians, the influence of mathematics, and final perspectives.  You 

can't  take in all of such a book at once; but as I use it, I am beginning to appreciate it. 

Peterson, Ivars, Improved pancake sorting (9 October 2008) http : I /www . maa . org/ 

mathtour i st/mathtourist_ 10_0_08 . html . 

Malkevitch, Joseph, Pancakes, graphs, and the genome of plants, The UMAP Journal of Undergrad

uate Mathematics and Its Applications 23 (4) (2002) 373-382. 

Hayes, Brian, Sorting out the genome, American Scientist 95 (September-October 2007) 286-391.  

Random reversals of  blocks of genes can produce variations in organisms, and the number of rever

sals is a clue to how distantly related organisms are. "Gene flipping" is related to "pancake flipping," 

putting a stack of pancakes in order of size by a sequence of moves of inserting a spatula, lifting off 
the pancakes above, and replacing them in reverse order. Peterson gives news of an improved upper 
bound, 18n/11, for the number of flips to order the stack, proved by students at the University of 
Texas at Dallas. Malkevitch's clear expository essay describes the pancake problem and its history, 
suggests undergraduate research projects, and mentions applications in computer design of the "pan
cake topology" of processors. Hayes's delightful article sticks closely to the biological applications 
of variations on the pancake problem. This is the only subject on which Bill Gates, as a student, 
published a scientific paper. 
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